首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine whether the role of coat protein (CP) in cell-to-cell movement of dicot-adapted cowpea chlorotic mottle bromovirus (CCMV) is distinct from that of monocot-adapted brome mosaic bromovirus (BMV), two reporter genes, beta-glucuronidase (GUS) and enhanced green fluorescent protein (EGFP), were substituted for the CP in a biologically active clone of CCMV RNA3 (C3). Primary leaves of Nicotiana benthamiana, Chenopodium quinoa, and cowpea were co-inoculated with wild-type (wt) CCMV RNA 1 and -2 and either C3/delta CP-GUS or C3/delta CP-EGFP and analyzed for GUS activity or the presence of green fluorescence. The visual appearance of infections caused by GUS or EGFP variants indicated that, in CCMV, epidermal cell-to-cell movement can occur without a functional CP. By contrast, inoculation of MP defective variants of C3/delta CP-GUS or C3/delta CP-EGFP resulted in subliminal infections. Additional experiments examining the infectivity of wt BMV RNA 1 and -2 and a BMV RNA3 variant bearing the EGFP in the place of CP (B3/delta CP-EGFP) confirmed previous observations that, unlike CCMV, epidermal cell-to-cell movement of BMV is dependent on the expression of a functional CP. Taken together, the results demonstrate that BMV and CCMV use different mechanisms for initial epidermal cell-to-cell spread, and the individual role played by the respective CP genes in this active process is discussed.  相似文献   

2.
Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays of protein-protein interaction, thus permitting the identification of additional interacting domains. We now map an interaction found to take place between two 1a proteins. Using previously characterized 1a mutants, a perfect correlation was found between the in vivo phenotypes of these mutants and their abilities to interact with wild-type 1a (wt1a) and each other. Western blot analysis revealed that the stabilities of many of the noninteracting mutant proteins were similar to that of wt1a. Deletion analysis of 1a revealed that the N-terminal 515 residues of the 1a protein are required and sufficient for 1a-1a interaction. This intermolecular interaction between the putative capping domain and itself was detected in another tripartite RNA virus, cucumber mosaic virus (CMV), suggesting that the 1a-1a interaction is a feature necessary for the replication of tripartite RNA viruses. The boundaries for various activities are placed in the context of the predicted secondary structures of several 1a-like proteins of members of the alphavirus-like superfamily. Additionally, we found a novel interaction between the putative capping and helicase-like portions of the BMV and CMV 1a proteins. Our cumulative data suggest a working model for the assembly of the BMV RNA replicase.  相似文献   

3.
4.
Cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) belong to the Cucumovirus genus. They have a tripartite genome consisting of single-stranded RNAs, designated 1, 2, and 3. Previous studies have shown that viable pseudorecombinants could be created in vitro by reciprocal exchanges between CMV and TAV RNA 3, but exchanges of RNAs 1 and 2 were replication deficient. When we coinoculated CMV RNAs 2 and 3 along with TAV RNAs 1 and 2 onto Nicotiana benthamiana, a hybrid quadripartite virus appeared that consisted of TAV RNA 1, CMV RNAs 2 and 3, and a distinctive chimeric RNA originating from a recombination between CMV RNA 2 and the 3'-terminal 320 nucleotides of TAV RNA 2. This hybrid arose by means of segment reassortment and RNA recombination to produce an interspecific hybrid with the TAV helicase subunit and the CMV polymerase subunit. To our knowledge, this is the first report demonstrating the evolution of a new plant or animal virus strain containing an interspecific hybrid replicase complex.  相似文献   

5.
Geminiviruses have unique, twinned icosahedral particles which encapsidate circular single-stranded DNA. Their genomes are composed of either one or two DNA segments. Monopartite geminiviruses absolutely require a functional coat protein (CP) for infectivity, whereas bipartite geminivirus CP null mutants can infect plants systemically. However, we show here that a CP mutant of the bipartite tomato golden mosaic virus (TGMV), which can infect Nicotiana benthamiana systemically, is confined to the inoculated leaves of Nicotiana tabacum or Datura stramonium. We also show that a CP mutant of the related bean golden mosaic virus (BGMV), which can infect beans systemically, is confined to the inoculated leaves of N. benthamiana. In each case, the extent of viral DNA accumulation in inoculated leaves was unaffected by the absence of CP, which suggests that CP is required specifically for systemic movement. The dispensability of CP is correlated with the degree of virus-host adaptation. TGMV is well adapted to N. benthamiana and does not require CP to infect this host systemically, whereas BGMV is poorly adapted to N. benthamiana and requires CP. Analysis of TGMV-BGMV hybrid viruses revealed that the viral genetic background can also affect the dispensability of CP for systemic movement in N. benthamiana. Thus, bipartite geminivirus movement in planta can be resolved genetically into three components: (i) local, cell-to-cell movement, which does not require CP; (ii) CP-dependent systemic movement, which occurs in all hosts tested; and (iii) CP-independent systemic movement, which occurs in hosts to which a given virus is well adapted.  相似文献   

6.
During the systemic infection of plants by viruses, host factors play an important role in supporting virus multiplication. To identify and characterize the host factors involved in this process, we isolated an Arabidopsis thaliana mutant named RB663, in which accumulation of the coat protein (CP) of cucumber mosaic virus (CMV) in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in RB663 plants was controlled by a monogenic, recessive mutation designated cum2-1, which is located on chromosome III and is distinct from the previously characterized cum1 mutation. Multiplication of CMV was delayed in inoculated leaves of RB663 plants, whereas the multiplication in RB663 protoplasts was similar to that in wild-type protoplasts. This suggests that the cum2-1 mutation affects the cell-to-cell movement of CMV rather than CMV replication within a single cell. In RB663 plants, the multiplication of turnip crinkle virus (TCV) was also delayed but that of tobacco mosaic virus was not affected. As observed with CMV, the multiplication of TCV was normal in protoplasts and delayed in inoculated leaves of RB663 plants compared to that in wild-type plants. Furthermore, the phenotype of delayed TCV multiplication cosegregated with the cum2-1 mutation as far as we examined. Therefore, the cum2-1 mutation is likely to affect the cell-to-cell movement of both CMV and TCV, implying a common aspect to the mechanisms of cell-to-cell movement in these two distinct viruses.  相似文献   

7.
The 5'-non-translated region (NTR) of enteroviruses contains secondary structures which do not only serve in the initiation of translation but also in the initiation of plus-strand RNA synthesis by binding of viral and cellular proteins. To investigate a very early step of enteroviral replication by cis- and trans-complementation, 220 nucleotides of the 5'-region of coxsackievirus B3 (CVB3) were exchanged with the corresponding region of poliovirus type 1 (PV1) to yield the chimeric virus CVB3[PV5']. The viability of this chimera demonstrates that the polioviral cloverleaf structure of the 5'-NTR is functional in the replication of a chimeric CVB3 RNA. The HeLa-generated chimera reveals a 4-nucleotide deletion (nt 232-235) within a short direct repeat. Besides clearly reduced growth characteristics in all permissive cell lines, the chimera exhibits a small-plaque phenotype. The host range is changed since the virus grows well in human HeLa cells, but does not replicate in murine YAC-1 and Ltk cells, although these cell lines are permissive for the replication of both parental viruses. Moreover, in simian Vero, COS-1, or FRhK-4 cells the HeLa-generated chimera CVB3[PV5'] exhibits a strict temperature sensitivity at 39 degrees C. After infection of simian cells with high m.o.i. in situ hybridization data reveal that the chimera replicates in single cells at almost normal rates indicating that only a small fraction of HeLa-generated virus is able to multiplicate in simian cell lines. After passaging the virus chimera in Vero cells two further mutations occur at nucleotide positions 185 and 227. Since this genome region is known to interact with viral proteins and several host cell factors during the initiation of replication and translation, interactions of such factors with either viral RNA or viral proteins may be disturbed but still functional at permissive temperatures in HeLa cells and simian cell lines, whereas murine cell lines are not permissive. These experiments suggest that phenomena like host range, tissue tropism and cell-type specificity may be explained as a complex interplay of cellular surface receptors and intracellular host factors. Such intracellular factors could be part of the enteroviral initiation complex during the plus-strand RNA synthesis or during translation initiation and could be expressed in a tissue-, organ- or species-specific way or might be regulated developmentally.  相似文献   

8.
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport.  相似文献   

9.
10.
Brome mosaic bromovirus (BMV), a positive-stranded RNA virus, supports both homologous and nonhomologous RNA recombinations. Two BMV (temperature-sensitive) mutants with alterations in the 2a protein, the putative RNA polymerase component of the viral replicase, were tested for their ability to support both types of recombination. Here we report that one of these mutants with the Leu-486 substituted by Phe did not support nonhomologous recombination. Effect on homologous recombination was mainly on the location and precision of crossover events. The other 2a mutant with Asn-458 substituted by Asp did not negatively affect either type of recombination. Apparently, BMV RNA polymerase participates differently in the two types of recombination events.  相似文献   

11.
12.
Several prokaryotic chaperone proteins were shown to promote the correct folding and in vivo assembly of tobacco mosaic virus coat protein (TMV CP) using a chimaeric RNA packaging system in control or chaperone-deficient mutant strains of Escherichia coli. Mutations in groEL or dnaK reduced the amount of both total and soluble TMV CP, and the yield of assembled TMV-like particles, several-fold. Thus both GroEL and DnaK have significant direct or indirect effects on the overall expression, stability, folding and assembly of TMV CP in vivo. In contrast, while cells carrying a mutation in grpE expressed TMV CP to a higher overall level than control E. coli, the amounts of both soluble CP and assembled TMV-like particles were below control levels, suggesting a negative effect of GrpE on overall CP accumulation, but positive role(s) in CP folding and assembly. Curiously, cells with mutations in groES and, to a lesser extent, dnaJ expressed total, soluble and assembled forms of TMV CP significantly above control values, suggesting some form of negative control by these chaperone proteins. To avoid pleiotropic effects or artefacts in chaperone-null mutants, selected chaperone proteins were also over-expressed in control E. coli cells. Overproduction of GroEL or GroES alone had little effect. However, co-overexpression of GroEL and GroES resulted in a two-fold increase in soluble TMV CP and a four-fold rise in assembled TMV-like (pseudovirus) particles in vivo. Moreover, TMV CP was shown to interact directly with GroEL in vivo. Together, these results suggest that GrpE and the GroEL/GroES chaperone complex promote the correct folding and assembly of TMV CP into ribonucleocapsids in vivo.  相似文献   

13.
Transgenic tobacco plants expressing the wild-type (wt) coat protein (CP) gene of alfalfa mosaic virus (AIMV) have been shown to be resistant to infection with viral particles and RNAs or to infection with viral particles only. The difference in resistance of these plants to RNA inocula was found to correlate with a difference in the expression level of the transgene. Plants expressing a mutant AIMV CP with the N-terminal serine residue changed to glycine have been shown to be susceptible to infection with wt viral particles or RNAs. By site-directed mutagenesis of AIMV cDNA a viable mutant virus encoding CP with the same N-terminal mutation was obtained. Plants expressing wt or mutant CP were resistant to the mutant virus, demonstrating that a single amino acid substitution in CP did not permit the virus to overcome CP-mediated resistance. Although the mutant CP did not confer resistance to wt virus when expressed in transgenic plants, it was still effective in classical cross-protection: plants infected with the mutant virus were resistant to severe strain of AIMV. A model to explain the data is discussed.  相似文献   

14.
15.
The complete sequences of wheat yellow mosaic bymovirus (WYMV) RNA1 and RNA2 were determined. RNA1 is 7636 nucleotides long [excluding the 3'-poly(A)], and codes for a 269 kDa polyprotein of 2,404 amino acids which contains the capsid protein (CP) at the C terminus and seven putative nonstructural proteins. RNA2 is 3,659 nucleotides long and codes for a polyprotein of 904 amino acids which contains a 28 kDa putative proteinase and a 73 kDa polypeptide. These functional proteins are arranged as in RNA1 and RNA2 of barley yellow mosaic bymovirus (BaYMV). Comparisons with the sequence reported for the 3' half of RNA1 of wheat spindle streak mosaic bymovirus (WSSMV) from Southern France show that WYMV and WSSMV have a similar genetic organization. However, WYMV and WSSMV share only 77% amino acid sequence identity in their deduced CPs in spite of their close serological relationship, and 74% nucleotide sequence identity in their 3' non-coding regions. Thus, the sequence data indicate that WYMV and WSSMV are not strains of the same virus, which has long been suggested, but are distinct virus species within the genus Bymovirus of the family Potyviridae.  相似文献   

16.
RNA synthesis during viral replication requires specific recognition of RNA promoters by the viral RNA-dependent RNA polymerase (RdRp). Four nucleotides (-17, -14, -13, and -11) within the brome mosaic virus (BMV) subgenomic core promoter are required for RNA synthesis by the BMV RdRp (R. W. Siegel et al., Proc. Natl. Acad. Sci. USA 94:11238-11243, 1997). The spatial requirements for these four nucleotides and the initiation (+1) cytidylate were examined in RNAs containing nucleotide insertions and deletions within the BMV subgenomic core promoter. Spatial perturbations between nucleotides -17 and -11 resulted in decreased RNA synthesis in vitro. However, synthesis was still dependent on the key nucleotides identified in the wild-type core promoter and the initiation cytidylate. In contrast, changes between nucleotides -11 and +1 had a less severe effect on RNA synthesis but resulted in RNA products initiated at alternative locations in addition to the +1 cytidylate. The results suggest a degree of flexibility in the recognition of the subgenomic promoter by the BMV RdRp and are compared with functional regions in other DNA and RNA promoters.  相似文献   

17.
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 x 10(6) infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.  相似文献   

18.
Geminiviruses are plant viruses with circular single-stranded DNA (ssDNA) genomes encapsidated in double icosahedral particles. Tomato leaf curl geminivirus (ToLCV) requires coat protein (CP) for the accumulation of ssDNA in protoplasts and in plants but not for systemic infection and symptom development in plants. In the absence of CP, infected protoplasts accumulate reduced levels of ssDNA and increased amounts of double-stranded DNA (dsDNA), compared to accumulation in the presence of wild-type virus. To determine whether the gene 5 protein (g5p), a ssDNA binding protein from Escherichia coli phage M13, could restore the accumulation of ssDNA, ToLCV that lacked the CP gene was modified to express g5p or g5p fused to the N-terminal 66 amino acids of CP (CP66:6G:g5). The modified viruses led to the accumulation of wild-type levels of ssDNA and high levels of dsDNA. The accumulation of ssDNA was apparently due to stable binding of g5p to viral ssDNA. The high levels of dsDNA accumulation during infections with the modified viruses suggested a direct role for CP in viral DNA replication. ToLCV that produced the CP66:6G:g5 protein did not spread efficiently in Nicotiana benthamiana plants, and inoculated plants developed only very mild symptoms. In infected protoplasts, the CP66:6G:g5 protein was immunolocalized to nuclei. We propose that the fusion protein interferes with the function of the BV1 movement protein and thereby prevents spread of the infection.  相似文献   

19.
Tomato bushy stunt virus (TBSV) is a small isometric virus that contains a single-stranded RNA genome with five major genes. In this study, we have analyzed the importance of an additional small sixth open reading frame (ORF) of 207 nucleotides, designated pX, which resides at the 3' end of the genome. Bioassays showed that deletions or additions of nucleotides at the 5' end of the pX gene that were designed to disrupt the ORF, or site-specific inactivation of its start codon, all gave rise to TBSV mutants which were unable to accumulate to detectable levels in cucumber or Nicotiana benthamiana protoplasts. Although these results suggested a role for the putative pX protein, introduction of a premature stop codon in the pX gene had no strong negative effect. However, a comparable mutation that affected the same nucleotides without changing the predicted amino acid sequence greatly reduced RNA accumulation. Therefore, we hypothesize that cis-acting RNA sequences within the pX gene, rather than the predicted protein influence genome accumulation. The requirement of the cis-acting pX ORF sequences appears to be host-dependent because comparisons revealed that subtle pX gene mutations that prohibited accumulation of TBSV RNA in cucumber or N. benthamiana, failed to interfere substantially with replication in Chenopodium quinoa protoplasts or plants. Irrespective of the host, the cis-acting pX gene sequences were dispensable on replicase-deficient RNAs that require helper TBSV for replication in trans. In addition, the pX gene was not essential for in vitro translation of replicase proteins from genomic RNA. These results suggest that neither translation nor polymerase activity of the replicase proteins require pX gene sequences. However, it is possible that very early in the replication cycle of genomic RNA in vivo, the pX gene cis-acting element is essential for some other unidentified function which involves interaction with one or more host components whose composition varies slightly between different plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号