共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mechanism of IL-12 production has been studied by stimulating macrophages or B cell lines with LPS, Staphylococcus aureus, or phorbol diester. However, since IL-12 plays an important role in the activation of T cells interacting with APC, it is important to study the mechanism of IL-12 production induced by T helper cell-APC interaction. We and others have demonstrated that IL-12 is produced in cultures where Th1 cells are stimulated with Ag or APC. In the present experiments, we studied a role of CD40-CD40 ligand (CD40L) interaction in IL-12 production and obtained the following results: 1) incubation of normal Th1 clone with APC in the presence of Ag induced IL-12 p40 and p35 mRNA accumulation and IL-12 production, and the addition of anti-CD40L blocked the p40 mRNA accumulation and IL-12 production but not p35 mRNA accumulation; 2) when Th1 clone from a CD40L-deficient mouse was used in the incubation, p35 mRNA accumulation was induced, but neither p40 mRNA accumulation nor IL-12 production was induced; 3) CD40L+ Th1 clone, or insect cell membrane expressing mouse CD40L, induced p40 mRNA accumulation and IL-12 production but not p35 mRNA accumulation. These results indicate that the CD40-CD40L interaction plays a critical role in IL-12 p40 mRNA accumulation and bioactive IL-12 production and that p35 mRNA accumulation was regulated via a different mechanism than CD40-CD40L interaction. Most of the cells producing IL-12 were Mac-1+ macrophages. 相似文献
3.
Interactions between CD40 on antigen-presenting cells and its ligand (CD40L) on T cells has been implicated in T cell-mediated immune responses. Previously, we have shown that contact hypersensitivity (CHS), a cell-mediated cutaneous immune response in reaction to haptens, could be subclassified based on whether the hapten primed for Th1 or Th2 cytokines in cells isolated from draining lymph nodes. We also found that tolerance to a Th2-priming hapten could be induced only by simultane blockade of the CD40-CD40L and B7-CD28 at the time of sensitization. Here we demonstrate that blockade of CD40-CD40L signaling alone induces long-lasting unresponsiveness to the Th1 hapten 2,4-dinitrofluorobenzene (DNFB), and inhibits antigen-specific T cell proliferation in vitro. We find that CD40-CD40L signaling is required in the sensitization but not elicitation phase of DNFB-induced CHS, as treatment of mice with anti-CD40L monoclonal antibody (mAb) does not affect the response to hapten challenge in previously sensitized and untreated animals. Examination of cytokine production shows that anti-CD40L mAb decreases interferon-gamma production by draining lymph node cells from DNFB-sensitized mice, and reciprocally increases interleukin (IL)-4 production. Consistent with this Th1 to Th2 immune deviation, anti-CD40L mAb prevents the induction of IL-12 mRNA in regional lymph nodes, an event which is normally seen within 12 h following hapten sensitization. In contrast, suppression of CHS by CTLA4Ig decreased the production of all cytokines by draining lymph node cells. Together, these data show that blockade of the CD40-CD40L pathway by itself is sufficient to induce tolerance to DNFB-induced CHS, and that this is associated with blockade of IL-12 induction and Th1 to Th2 immune deviation. 相似文献
4.
HJ Gruss F Herrmann V Gattei A Gloghini A Pinto A Carbone 《Canadian Metallurgical Quarterly》1997,24(5-6):393-422
CD40 is a 48 Kd integral membrane protein expressed by cells of B cells, origin, dentritic cells, monocytes, epithelial cells, endothelial cells and tumor cells including carcinomas, B cell lymphomas/leukemias and Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin's disease (HD). CD40 has been clustered as a member of the nerve growth factor (NGF)/tumor necrosis factor (TNF) receptor superfamily with the corresponding counterstructure, the CD40 ligand (L) being mainly expressed by activated CD4+ T cells, but also some activated CD8+ T cells, basophils, eosinophils, mast cells and stromal cells. CD40L shares significant amino acid homology with TNF particularly in its extracellular domain ("TNF homology region") and is therefore viewed as a member of the TNF ligand superfamily. Binding of CD40L+ T cells to CD40+ B cells is thought to play a major role in T cell-dependent B cell activation, B cell proliferation, Ig isotype switching, memory B cell formation and rescue of B cells from apoptotic death in germinal centers. Mutations of the CD40L gene have been associated with the X-linked hyper-IgM immunodeficiency syndrome, pointing to the critical role of the CD40/CD40L interaction in the T cell-B cell interplay. Accordingly, expression of CD40 by human lympho-hematopoietic tumors has been shown in most of the B cell neoplasias, H-RS cells and HD and some carcinomas. In contrast, CD40L+ tumor cells are almost invariably restricted to CD4+/CD8- T cell lymphomas. Overall, functional CD40/CD40L interactions appear to be critical for cellular activation signals during immune responses and neoplastic tumor cell growth. The understanding of the biology of CD40L has improved our diagnostic and therapeutic repertoire in the management of several human diseases, including CD40+ tumors. 相似文献
5.
CB Wilson LJ Embree D Schowalter R Albert A Aruffo D Hollenbaugh P Linsley MA Kay 《Canadian Metallurgical Quarterly》1998,72(9):7542-7550
Recombinant adenovirus vectors have been used to transfer genes to the lungs in animal models, but the extent and duration of primary transgene expression and the ability to achieve expression after repeated vector administration have been limited by the development of antigen-specific immunity to the vector and, in some cases, to vector-transduced foreign proteins. To determine if focused modulation of the immune response could overcome some of these limitations, costimulatory interactions between T cells and B cells/antigen-presenting cells were transiently blocked around the time of vector administration. Systemic treatment at the time of primary-vector administration with a monoclonal antibody (MR1) against murine CD40 ligand, combined with recombinant murine CTLA4Ig and intratracheal coadministration of an adenovirus vector transducing the expression of murine CTLA4Ig, prolonged adenovirus-transduced beta-galactosidase expression in the airways for up to 28 days and resulted in persistent alveolar expression for >90 days (the duration of the experiment). Consistent with these results, this treatment regimen reduced local inflammation and markedly reduced the T-cell and T-cell-dependent antibody response to the vector. A secondary adenovirus vector, administered >90 days after the last systemic dose of MR1 and muCTLA4Ig, resulted in alkaline phosphatase expression at levels comparable to those seen with primary-vector administration. Expression of the secondary transgene persisted in the alveoli (but not in the airways) for up to 24 days (the longest period of observation) at levels similar to those observed on days 3 to 4. These results indicate that transient inhibition of costimulatory molecule interactions substantially enhanced gene transfer to the alveoli but was much less effective in the airways. This suggests that there are differences in the efficiency or nature of mechanisms limiting transgene expression in the airways and in the alveoli. 相似文献
6.
L Lu W Li F Fu FG Chambers S Qian JJ Fung AW Thomson 《Canadian Metallurgical Quarterly》1997,64(12):1808-1815
BACKGROUND: Failure of costimulatory molecule-deficient donor dendritic cells (DCs) to induce indefinite allograft acceptance may be a result of the 'late" up-regulation of these molecules on the DCs after interaction with host T cells. Ligation of CD40 on antigen-presenting cells by its cognate ligand CD40L is thought to induce expression of CD80 (B7-1) and CD86 (B7-2). We examined the influence of anti-CD40L monoclonal antibody (mAb) on the capacity of donor-derived DC progenitors to induce long-term allograft survival. METHODS: High purity DC progenitors were grown from B10 (H2b) mouse bone marrow in granulocyte-macrophage colony-stimulating factor and transforming growth factor beta1 (TGFbeta1). Mature DC were propagated in granulocyte-macrophage colony-stimulating factor and interleukin-4. Their phenotype was characterized by flow cytometric analysis and their function by mixed leukocyte reactivity. Anti-donor cytotoxic T lymphocyte activity in grafts and spleens of vascularized heart allograft recipients was also assessed. RESULTS: The TGFbeta3-cultured cells were (1) DEC 205-positive, MHC class II-positive, CD80dim, CD86dim, and CD40dim, (2) poor stimulators of naive allogeneic T-cell proliferation, and (3) able to prolong significantly B10 cardiac allograft survival in C3H (H2k) recipients when given (2 x 10[6] i.v.) 7 days before organ transplantation (median survival time [MST] 26 days vs. 12 days in controls, and 5 days in interleukin-4 DC-treated animals). Their allostimulatory activity was further diminished by addition of anti-CD40L mAb at the start of the mixed leukocyte cultures. Anti-CD40L mAb alone (250 microg/mouse, i.p.; day -7) did not prolong cardiac graft survival (MST 12 days). In contrast, TGFbeta-cultured DCs + anti-CD40L mAb extended graft survival to a MST of 77 days, and inhibited substantially the anti-donor cytotoxic T lymphocyte activity of graft-infiltrating cells and host spleen cells assessed 8 days after transplant. CONCLUSIONS: The CD40-CD40L pathway appears important in regulation of allogeneic DC-T-cell functional interaction in vivo; its blockade increases markedly the potential of costimulatory molecule-deficient DCs of donor origin to induce long-lasting allograft survival. 相似文献
7.
RJ Noelle 《Canadian Metallurgical Quarterly》1996,4(5):415-419
The genetic changes involved in the metastatic process of ovarian epithelial cancer remain undetermined. The expression of nm23, a putative metastasis-suppressor gene product, was assessed immunohistochemically in malignant and benign ovarian neoplasms, considering histology of tumors and clinical advancement of disease. Comparison of nm23 protein content in tissue sections and respective cyst and/or ascitic fluid cells was also performed. Significant heterogeneity of nm23 immunostaining was observed, and no correlation with histological subtype of ovarian carcinoma was found. Expression of nm23 was higher in carcinomas compared with benign tumors. A significant trend to have a higher nm23 reactivity in ascitic fluid cells vs. primary tumors was observed. Our results indicate that the increase of nm23 reactivity is activated in the early stages of the disease and that the progression of ovarian carcinoma is accompanied by overexpression of nm23 protein. Our observations did not confirm the postulated role of nm23 as a suppressor gene in ovarian cancer. 相似文献
8.
9.
J Suttles M Evans RW Miller JC Poe RD Stout LM Wahl 《Canadian Metallurgical Quarterly》1996,60(5):651-657
Circulating monocytes have a limited life span and will undergo apoptosis in the absence of specific stimuli. Recent studies have demonstrated that monocytes can be rescued from apoptosis via lipopolysaccharide (LPS) activation or stimulation with interleukin-1 or tumor necrosis factor-alpha. Based on previous studies from our laboratory, we hypothesized that, in nonseptic (e.g., autoimmune) inflammation, the presence of activated T cells may enhance monocyte longevity through T cell contact-dependent signaling. Plasma membranes prepared from 6 h activated (TmA) and resting (TmR) purified CD4+ T cells were added to resting elutriation-purified monocytes cultured in serum-free medium. Cells were assayed for degree of apoptosis occurring over a 72-h incubation using both agarose gel electrophoresis and flow cytometry. The addition of TmA (but not TmR) was capable of blocking monocyte apoptosis and the ability of TmA to rescue monocytes was abrogated by the addition of anti-CD40L antibodies. Rescue of monocytes from apoptosis could also be mediated by direct cross-linking of monocyte CD40. Inhibitors of tyrosine kinase activity blocked both TmA and anti-CD40-mediated rescue of monocytes from apoptosis, suggesting a primary role of a tyrosine kinase signaling pathway in the events controlling monocyte longevity. 相似文献
10.
Interaction of CD40 with its ligand (CD154) can induce CD40-bearing APCs to express immune stimulatory accessory molecules that facilitate immune recognition. We evaluated whether a plasmid vector encoding CD154 (pCD40L) could influence the immune response to a transgene protein encoded by coinjected plasmid DNA. We found that coinjection of pCD40L in BALB/c mice enhanced the Ab response to beta-galactosidase induced by i.m. or intradermal injection of placZ, a plasmid DNA vector encoding beta-galactosidase. Furthermore, i.m. or intradermal coinjection of pCD40L with placZ enhanced the generation of CTL specific for P815 cells transfected with placZ. This study indicates that pCD40L can serve as a genetic adjuvant capable of augmenting humoral and cellular immune responses to Ags encoded by plasmid DNA expression vectors. 相似文献
11.
Because CD40 ligand (CD40L) is a co-stimulator molecule for multiple components of the immune response, we wanted to determine whether transgenic expression of the molecule would increase immune responses against a weakly immunogenic murine tumor, neuro-2a. Tumor cells were transduced with a retroviral construct containing the CD40L gene and co-injected with variable numbers of non-CD40L transduced cells into syngeneic mice. Mice injected with cells that expressed CD40L had a significant reduction in average tumor size as compared to controls (p < 0.0001). In addition, survival of the neuro-2a/CD40L mice was 48 days versus 34 days for the neuro-2a/neo controls (p < 0.02). Expression of CD40L by less than 1.5% of neuro-2a cells was sufficient for significant antitumor effects (p < 0.001). These antitumor effects protected mice from subsequent challenge with parental neuro-2a cells. The protective effects of CD40L were associated with systemic immunomodulation. In vivo depletion of CD8+ cells abrogated the CD40L-mediated antitumor effects. Analysis of spleens from CD40L-protected animals showed increased numbers of CD4+ and CD8+ cells, the majority of which co-expressed the activation marker CD25. In addition, an increased number of antigen-presenting cells (APCs) expressed the co-stimulatory molecule CD86. These experiments illustrate that transducing even a small percentage of tumor cells with CD40 ligand can create a long-lasting systemic immune response capable of impeding growth of unmodified neuroblastoma cells. 相似文献
12.
N Renard M Lafage-Pochitaloff I Durand V Duvert L Coignet J Banchereau S Saeland 《Canadian Metallurgical Quarterly》1996,87(12):5162-5170
Because activated T cells were previously shown to induce proliferation of human normal B-cell precursors (BCP) via the CD40 pathway, we investigated the effects of T cells on leukemic blasts isolated from patients with B-lineage acute lymphoblastic leukemia (BCP-ALL). An anti-CD3 activated human CD4+ T-cell clone was found to induce significant call proliferation in four of nine BCP-ALL samples analyzed. In one of these cases, the T-cell effect was clearly dependent on interaction between CD40 and its ligand. Accordingly, a more thorough analysis was performed on this particular leukemia (case 461, adult early pre-B-ALL, mBCR+, Philadelphia+, i(9q)+). Thus, autologous CD4+ T cells isolated from the patient were also able to induce CD40-dependent proliferation of the leukemic blasts. Analysis of the phenotype after coculture showed that, among the CD19+ cells, a proportion gradually lost expression of CD10 and CD34, whereas some cells acquired CD23. In addition, and in contrast with normal BCP, activated T cells promoted maturation of a subset of the case 461 leukemic cells into surface IgM+ cells. The leukemic origin of the cycling and the maturing cells was assessed by the presence of i(9q), a chromosomal abnormality associated with this leukemia and evidenced by fluorescence in situ hybridization. Taken together, these results show that leukemic BCP can be activated via CD40 but that not all cases display detectable stimulation in response to T cells despite their expression of CD40. In addition, the present data suggest that CD4+ T cells could potentially play a role in the physiology of BCP-ALL. 相似文献
13.
14.
RJ Dunn CJ Luedecker HS Haugen CH Clegg AG Farr 《Canadian Metallurgical Quarterly》1997,45(1):129-141
We characterized the distribution of CD40 and CD40 ligand (CD40-L) in the adult and developing murine thymus. Before birth, CD40 was almost exclusively localized to scattered foci of medullary cells. By birth there was a dramatic upregulation of CD40 expression by cortical epithelial cells, which was accompanied by a consolidation of medullary epithelial foci. CD40-L+ thymocytes displayed a medullary location. Analysis of mice deficient in CD40-L expression indicated that CD40-L/CD40 interactions were not required for development of the medullary compartment. Overexpression of CD40-L targeted to thymocytes altered thymic architecture, as reflected by a dramatic loss of cortical epithelial cells, expansion of the medullary compartment, and extensive infiltration of the capsule with a mixture of CD3+ cells, B-cells, and macrophages/dendritic cells. Reconstitution of lethally irradiated normal mice with lck CD40-L bone marrow cells also resulted in loss of cortical epithelium and expansion of the medullary compartment. Disruption of the normal pattern of thymic architecture and epithelial differentiation as a consequence of increased intrathymic levels of CD40-L expression points to a role for CD40-L/CD40 interactions in the normal pattern of epithelial compartmentalization/differentiation within the thymic environment. 相似文献
15.
J Singh E Garber H Van Vlijmen M Karpusas YM Hsu Z Zheng JH Naismith D Thomas 《Canadian Metallurgical Quarterly》1998,7(5):1124-1135
CD40 Ligand (CD40L) is transiently expressed on the surface of T-cells and binds to CD40, which is expressed on the surface of B-cells. This binding event leads to the differentiation, proliferation, and isotype switching of the B-cells. The physiological importance of CD40L has been demonstrated by the fact that expression of defective CD40L protein causes an immunodeficiency state characterized by high IgM and low IgG serum levels, indicating faulty T-cell dependent B-cell activation. To understand the structural basis for CD40L/CD40 association, we have used a combination of molecular modeling, mutagenesis, and X-ray crystallography. The structure of the extracellular region of CD40L was determined by protein crystallography, while the CD40 receptor was built using homology modeling based upon a novel alignment of the TNF receptor superfamily, and using the X-ray structure of the TNF receptor as a template. The model shows that the interface of the complex is composed of charged residues, with CD40L presenting basic side chains (K143, R203, R207), and CD40 presenting acidic side chains (D84, E114, E117). These residues were studied experimentally through site-directed mutagenesis, and also theoretically using electrostatic calculations with the program Delphi. The mutagenesis data explored the role of the charged residues in both CD40L and CD40 by switching to Ala (K143A, R203A, R207A of CD40L, and E74A, D84A, E114A, E117A of CD40), charge reversal (K143E, R203E, R207E of CD40L, and D84R, E114R, E117R of CD40), mutation to a polar residue (K143N, R207N, R207Q of CD40L, and D84N, E117N of CD40), and for the basic side chains in CD40L, isosteric substitution to a hydrophobic side chain (R203M, R207M). All the charge-reversal mutants and the majority of the Met and Ala substitutions led to loss of binding, suggesting that charged interactions stabilize the complex. This was supported by the Delphi calculations which confirmed that the CD40/CD40L residue pairs E74-R203, D84-R207, and E117-R207 had a net stabilizing effect on the complex. However, the substitution of hydrophilic side chains at several of the positions was tolerated, which suggests that although charged interactions stabilize the complex, charge per se is not crucial at all positions. Finally, we compared the electrostatic surface of TNF/TNFR with CD40L/CD40 and have identified a set of polar interactions surrounded by a wall of hydrophobic residues that appear to be similar but inverted between the two complexes. 相似文献
16.
TA Koppi T Tough-Bement DM Lewinsohn DH Lynch MR Alderson 《Canadian Metallurgical Quarterly》1997,27(12):3161-3165
Dendritic cells (DC) are considered to be the most potent antigen-presenting cells (APC) in the immune system. In this study, we analyzed the regulation of apoptosis of human peripheral blood-derived DC. DC were generated from adherent peripheral blood mononuclear cells that had been cultured for 7 days with granulocyte-macrophage colony-stimulating factor and interleukin-4. These cells displayed phenotypic properties of DC, including dendritic processes, expression of CD1a and lack of expression of CD14, and were very potent at presenting soluble antigens to T cells. Blood-derived DC were demonstrated to express the Fas/CD95 antigen and an agonist antibody to CD95 strongly induced apoptotic cell death in these cells. Soluble trimeric CD40 ligand potently inhibited both CD95-mediated and spontaneous apoptosis in DC. The data suggest that interactions between members of the tumor necrosis factor family of ligands expressed by T cells with their receptors on DC play an important role in the regulation of apoptosis in DC during antigen presentation and may, therefore, regulate the duration of T cell expansion and cytokine production. 相似文献
17.
B Couderc L Zitvogel V Douin-Echinard L Djennane H Tahara G Favre MT Lotze PD Robbins 《Canadian Metallurgical Quarterly》1998,5(3):163-175
BACKGROUND: Most catalytic RNAs depend on divalent metal ions for folding and catalysis. A thorough structure-function analysis of catalytic RNA therefore requires the identification of the metal-ion-binding sites. Here, we probed the binding sites using Fenton chemistry, which makes use of the ability of Fe2+ to functionally or structurally replace Mg2+ at ion-binding sites and to generate short-lived and highly reactive hydroxyl radicals that can cleave nucleic acid and protein backbones in spatial proximity of these ion-binding sites. RESULTS: Incubation of group I intron RNA with Fe2+, sodium ascorbate and hydrogen peroxide yields distinctly cleaved regions that occur only in the correctly folded RNA in the presence of Mg2+ and can be competed by additional Mg2+, suggesting that Fe2+ and Mg2+ interact with the same sites. Cleaved regions in the catalytic core are conserved for three different group I introns, and there is good correlation between metal-ion-binding sites determined using our method and those determined using other techniques. In a model of the T4 phage-derived td intron, cleaved regions separated in the secondary structure come together in three-dimensional space to form several metal-ion-binding pockets. CONCLUSIONS: In contrast to structural probing with Fe2+/EDTA, cleavage with Fe2+ detects metal-ion-binding sites located primarily in the inside of the RNA. Essentially all metal-ion-binding pockets detected are formed by tertiary structure elements. Using this method, we confirmed proposed metal-ion-binding sites and identified new ones in group I intron RNAs. This approach should allow the localization of metal-ion-binding sites in RNAs of interest. 相似文献
18.
FD Shi B He H Li D Matusevicius H Link HG Ljunggren 《Canadian Metallurgical Quarterly》1998,28(11):3587-3593
The interactions of CD28-B7 and CD40-CD40 ligand (CD40L) pathways in T cell costimulation and autoimmune disease are incompletely understood. We sought to address this issue by investigation of the genesis of acetylcholine receptor (AChR)-induced antibody-mediated experimental autoimmune myasthenia gravis (EAMG) in CD28- and CD40L-deficient mice (CD28-/-, CD40L-/-). Compared to wild-type mice, the CD28-/- mice became less susceptible, and CD40L-/- mice were completely resistant to EAMG induction. Analysis of T helper functions, reflected by cytokine responses, revealed a switch to a Th1 profile in CD28-/- mice. Consistently, levels of serum AChR-specific antibodies of the IgG1 isotype were decreased in CD28-/- mice. In the CD40L-/- mice, both Th1 and Th2 cytokine responses were diminished, and T cell-dependent AChR-reactive B cell responses were more severely impaired than in the CD28-/- mice. Thus, CD28 and CD40L are differentially required for induction of EAMG. 相似文献
19.