首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioaerosol mass spectrometry is being developed to analyze and identify biological aerosols in real time. Mass spectra of individual Bacillus endospores were measured with a bipolar aerosol time-of-flight mass spectrometer in which molecular desorption and ionization were produced using a single laser pulse from a Q-switched, frequency-quadrupled Nd:YAG laser that was modified to have an approximately flattop profile. The flattened laser profile allowed the minimum fluence required to desorb and ionize significant numbers of ions from single aerosol particles to be determined. For Bacillus spores, this threshold had a mean value of approximately 1 nJ/microm(2) (0.1 J/cm(2)). Thresholds for individual spores, however, could apparently deviate by 20% or more from the mean. Threshold distributions for clumps of MS2 bacteriophage and bovine serum albumin were subsequently determined. Finally, the flattened profile was observed to increase the reproducibility of single-spore mass spectra. This is consistent with the general conclusions of our earlier paper on the fluence dependence of single-spore mass spectra and is particularly significant because it is expected to enable more robust differentiation and identification of single bioaerosol particles.  相似文献   

2.
We have fully characterized the mass spectral signatures of individual Bacillus atrophaeus spores obtained using matrix-free laser desorption/ionization bioaerosol mass spectrometry (BAMS). Mass spectra of spores grown in unlabeled, 13C-labeled, and 15N-labeled growth media were used to determine the number of carbon and nitrogen atoms associated with each mass peak observed in mass spectra from positive and negative ions. To determine the parent ion structure associated with fragment ion peaks, the fragmentation patterns of several chemical standards were independently determined. Our results confirm prior assignments of dipicolinic acid, amino acids, and calcium complex ions made in the spore mass spectra. The identities of several previously unidentified mass peaks, key to the recognition of Bacillus spores by BAMS, have also been revealed. Specifically, a set of fragment peaks in the negative polarity is shown to be consistent with the fragmentation pattern of purine nucleobase-containing compounds. The identity of m/z = +74, a marker peak that helps discriminate B. atrophaeus from Bacillus thuringiensis spores grown in rich media is [N1C4H12]+. A probable precursor molecule for the [N1C4H12]+ ion observed in spore spectra is trimethylglycine (+N(CH3)3CH2COOH), which produces a m/z = +74 peak when ionized in the presence of dipicolinic acid. A clear assignment of all the mass peaks in the spectra from bacterial spores, as presented in this work, establishes their relationship to the spore chemical composition and facilitates the evaluation of the robustness of "marker" peaks. This is especially relevant for peaks that have been used to discriminate Bacillus spore species, B. thuringiensis and B. atrophaeus, in our previous studies.  相似文献   

3.
The application of single-particle aerosol mass spectrometry (SPAMS) to the real-time detection of micrometer-sized single particles of high explosives is described. Dual-polarity time-of-flight mass spectra from 1000 single particles each of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN), as well as those of complex explosives, Composition B, Semtex 1A, and Semtex 1H, were obtained over a range of desorption/ionization laser fluences between 0.50 and 8.01 nJ/microm2. Mass spectral variability with laser fluence for each explosive is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ( approximately 1 pg) without the need for consumables is demonstrated.  相似文献   

4.
Single-particle aerosol mass spectrometry (SPAMS) was used for the real-time detection of liquid nerve agent simulants. A total of 1000 dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles each of dimethyl methyl phosphonate, diethyl ethyl phosphonate, diethyl phosphoramidate, and diethyl phthalate using laser fluences between 0.58 and 7.83 nJ/microm2, and mass spectral variation with laser fluence was studied. The mass spectra obtained allowed identification of single particles of the chemical warfare agent (CWA) simulants at each laser fluence used although lower laser fluences allowed more facile identification. SPAMS is presented as a promising real-time detection system for the presence of CWAs.  相似文献   

5.
We demonstrate that molecular ions with mass-to-charge ratios (m/z) ranging from a few hundred to 19 050 can be desorbed from whole bacterial spores using infrared laser desorption and no chemical matrix. We have measured the mass of these ions using time-of-flight mass spectrometry and we observe that different ions are desorbed from spores of Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Bacillus niger. Our results raise the possibility of identifying microorganisms using mass spectrometry without conventional sample preparation techniques such as the addition of a matrix. We have measured the dependence of the ion yield from B. subtilis on desorption wavelength over the range 3.05-3.8 microm, and we observe the best results at 3.05 microm. We have also generated mass spectra from whole spores using 337-nm ultraviolet laser desorption, and we find that these spectra are inferior to spectra generated with infrared desorption. Since aerosol analysis is a natural application for matrix-free desorption, we have measured mass spectra from materials such as ragweed pollen and road dust that are likely to form a background to microbial aerosols. We find that these materials are readily differentiated from bacterial spores.  相似文献   

6.
Chen Y  Vertes A 《Analytical chemistry》2006,78(16):5835-5844
Laser-induced silicon microcolumn arrays (LISMA) were developed as matrix-free substrates for soft laser desorption/ionization mass spectrometry (SLDI-MS). When low-resistivity silicon wafers were irradiated in air, sulfur hexafluoride, or water environment with multiple pulses from a 3 x omega mode-locked Nd:YAG laser, columnar structures were formed on the surface. The radii of curvature of the column tips varied with the processing environment, ranging from approximately 120 nm in water, to <1 mum in SF6, and to approximately 2 mum in air. In turn, these microcolumn arrays were used as matrix-free soft laser desorption substrates. In SLDI-MS experiments with a nitrogen laser, the microcolumn arrays obtained in water environment readily produced molecular ions for peptides and synthetic polymers at low laser fluence. These surfaces demonstrated the best ion yield among the three arrays. The threshold laser fluence and ion yield were comparable to those observed in matrix-assisted laser desorption/ionization. Low-femtomole sensitivity and approximately 6000 Da mass range were achieved. At elevated laser fluence, efficient in-source decay was observed and extensive peptide sequence information was extracted from the resulting mass spectra. The versatility of LISMA was attributed to confinement effects due to the submicrometer morphology and to the surface, thermal, and optical properties of processed silicon.  相似文献   

7.
Infrared laser evaporation of single aerosol particles in a vacuum followed by vacuum ultraviolet (VUV) laser ionization and time-of-flight mass spectroscopy of the resulting vapor provides a depth profile of the particle's composition. Analyzing glycerol particles coated with 60-150-nm coatings of oleic acid using either a CO2 laser or a tunable optical parametric oscillator as an evaporation laser results in mass spectra that depend on the IR laser power. Low infrared laser powers incompletely vaporize particles and preferentially probe the composition of the surface layers of the particle, but high laser powers evaporate the entire particle and produce spectra representative of the particle's total composition. In the limit of low laser power, the fraction of oleic acid in the mass spectra is as much as 50 times greater than the fraction of oleic acid in the particle, providing a surface-layer-specific characterization. The OPO laser provides even more surface specificity, producing an [oleic acid]/[glycerol] ratio as much as four times larger (for a 60-nm coating) than that obtained using the CO2 laser. The infrared laser power required to sample the core of the particle increases with the thickness of the coating and is sensitive to changes in the coating thickness on the order of 10 nm. In contrast to these intuitively appealing results, high CO2 laser powers (approximately 90 mJ/pulse) produce mass spectra that, at short delays between the CO2 and VUV lasers, show enrichment of the core material rather than the coating. Likewise, tuning the OPO to frequencies that are resonant with the core material but transparent to the coating also results in selective detection of the core. The results suggest that a shattering mechanism dominates the vaporization dynamics in these situations.  相似文献   

8.
Aflatoxin screening by MALDI-TOF mass spectrometry   总被引:1,自引:0,他引:1  
Efficient detection of aflatoxins B1, B2, G1, and G2 has been performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using a UV-absorbing ionic liquid matrix to obtain "matrix-free" mass spectra and addition of NaCl to enhance sensitivity via Na+ cationization. Using ionic alpha-cyano-4-hydroxycinnamic acid (Et3N-alpha-CHCA) as the matrix, matrix-free mass spectra in the m/z range of interest are acquired, and the B1, B2, G1, and G2 aflatoxins are readily detected with an LOD as low as 50 fmol. The technique is fast, requires little sample preparation and no derivatization or chromatographic separation, and seems therefore to be suitable for high-throughput aflatoxin screening. It should be easily extended to other micotoxins and provide an attractive technique to control the quality of major crops subjected to huge world commercial trades such as peanuts, corn, and rice as well as to monitor bioterrorism threats by micotoxin poisoning.  相似文献   

9.
A novel approach to microbial detection using atmospheric pressure matrix-assisted laser desorption/ionization with an ion trap mass spectrometer to analyze whole cell bacteria is introduced. This new approach was tested with lyophilized spores and cultures of Bacillus globigii (BG) grown on agar media for 4 days or longer. At each stage of growth, it was found that biomarkers, identified as cyclic lipopeptides known as fengycin and surfactin, could be detected by pulsed ultraviolet laser irradiation of intact BG cells (approximately 5 mg) cocrystallized with alpha-cyano-4-hydroxycinnamic acid. Furthermore, definitive amino acid sequence information was obtained by performing tandem mass spectrometry on the precursor ions of the cyclic lipopeptides. The investigation was broadened to include the examination of aerosolized BG spores collected from the atmosphere and directly deposited onto double-sided tape. Subsequent analysis of the recovered spores resulted in the production of mass peaks consistent with fengycin. Other Bacillus species were analyzed for comparison and showed mass spectral peaks also identified as originating from various cyclic lipopeptides. Further studies were conducted using a pulsed infrared laser as the excitation source to analyze BG cells (approximately 5 mg) suspended in a matrix of 0.03 M ammonium citrate and glycerol resulting in the production of ions characteristic of fengycin and surfactin.  相似文献   

10.
Laser-induced incandescence (LII) and laser elastic-scattering measurements have been obtained with subnanosecond time resolution from a propane diffusion flame. Results show that the peak and time-integrated values of the LII signal increase with increasing laser fluence to maxima at the time of the onset of significant vaporization, beyond which they both decrease rapidly with further increases in fluence. This latter behavior for the time-integrated value is known to be characteristic for a laser beam with a rectangular spatial profile and is attributed to soot mass loss from vaporization. However, there is no apparent explanation for the corresponding large decrease in the peak value. Analysis shows that the peak value occurs at the time in the laser pulse when the time-integrated fluence reaches approximately 0.2 J/cm(2) and that the magnitude of the peak value is strongly dependent on the rate of energy deposition. One possible explanation for this behavior is that, at high laser fluences, a cascade ionization phenomenon leads to the formation of an absorptive plasma that strongly perturbs the LII process.  相似文献   

11.
Silicon nanopowder (5-50 nm) was applied as a matrix for the analysis of small molecules in laser desorption/ionization mass spectrometry. In contrast with conventional matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry, the matrix background interference in the low mass range was significantly reduced. Effects of the particle size and sample preparation procedures on the background mass spectra and the analyte signal intensity have been investigated, and an optimized powder and sample preparation protocol was established. Several surface characterization tools have been applied as well. Both positive mode and negative mode laser desorption/ionization have been applied to different analytes including drugs, peptides, pesticides, acids, and others. Detection limits down to the low femtomole per microliter levels were achieved for propafenone and verapamil drugs. The method developed was found relatively tolerant to salt contamination, which allowed the direct analysis of morphine and propaphenone in untreated urine and triazine herbicides in a soil extract. The new silicon-nanoparticle-assisted laser desorption ionization method was found to be highly selective, which may be due to analyte-dependent precharging in solution, prior to vacuum laser desorption. Some aspects of the charge-transfer mechanism have been studied and discussed. In comparison with standard MALDI matrixes, the silicon nanopowder requires much lower laser fluence (contributing to a reduced background) has much better surface homogeneity, and is more tolerant to salt interference, which makes it an easily applicable practical tool at a potentially low cost.  相似文献   

12.
Single vegetative cells and spores of Bacillus atrophaeus, formerly Bacillus subtilis var. niger, were analyzed using bioaerosol mass spectrometry. Key biomarkers were identified from organisms grown in 13C and 15N isotopically enriched media. Spore spectra contain peaks from dicipolinate and amino acids. The results indicate that compounds observed in the spectra correspond to material from the spore's core and not the exosporium. Standard compounds and mixtures were analyzed for comparison. The biomarkers for vegetative cells were clearly different from those of the spores, consisting mainly of phosphate clusters and amino acid fragments.  相似文献   

13.
The mass dependency of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) response has been studied using equimolar mixtures of synthetic discrete mass poly(butylene glutarate) (PBG) oligomers of known structure having degrees of polymerization of 8, 16, 32, and 64. Mass discrimination observed was attributed to choice of matrix and detector saturation caused by higher laser intensity and inclusion of matrix ions in the MALDI spectra. Optimization of sample preparation and instrumental parameters provided uniform response over the mass ranged spanned by these four oligomers. The oligomer mixture was shown to serve as a model of more complex polymer distributions in the mass range 780-6000 Da, and application of the discrete mass oligomers as internal and calibration standards was demonstrated. Inclusion of PBG discrete mass oligomers as an internal standard in a quasi-equimolar mixture with polydispersed poly(butylene adipate) (PBA) indicated that some diminution of response occurred during the analysis of this mixture of materials. Reasons for differences in the corrected molecular weight averages of the polydispersed PBA obtained from measurements using MALDI and GPC were studied using individual discrete mass oligomers as calibration standards for GPC. The data indicated that differences in hydrodynamic volumes of PBG oligomers and PEG standards at similar masses resulted in an overestimation by GPC of the molecular weight averages of the PBA distribution.  相似文献   

14.
Peptide identification based on tandem mass spectrometry and database searching algorithms has become one of the central technologies in proteomics. At the heart of this technology is the ability to reproducibly acquire high-quality tandem mass spectra for database interrogation. The variability in tandem mass spectra generation is often assumed to be minimal, and peptide identifications are typically based on a single tandem mass spectrum. In this paper, we characterize the variance of scores derived from replicate tandem mass spectra using several database search algorithms and demonstrate the effects of spectral variability on the correct identification of peptides. We show that the variance associated with the collection of tandem mass spectra can be substantial leading to sizable errors in search algorithm scores ( approximately 5-25% RSD) and ultimately incorrect assignments. Processing strategies are discussed to minimize the impact of tandem mass spectra variability on peptide identification.  相似文献   

15.
A database of 5500 unique peptide tandem mass spectra acquired in an ion trap mass spectrometer was assembled for peptides derived from proteins digested with trypsin. Peptides were identified initially from their tandem mass spectra by the SEQUEST algorithm and subsequently validated manually. Two different statistical methods were used to identify sequence-dependent fragmentation patterns that could be used to improve fragmentation models incorporated into current peptide sequencing and database search algorithms. The currently accepted "mobile proton" model was expanded to derive a new classification scheme for peptide mass spectra, the "relative proton mobility" scale, which considers peptide ion charge state and amino acid composition to categorize peptide mass spectra into peptide ions containing "nonmobile", "partially mobile", or "mobile" protons. Quantitation of amide bond fragmentation, both N- and C-terminal to any given amino acid, as well as the positional effect of an amino acid in a peptide and peptide length on such fragmentation, has been determined. Peptide bond cleavage propensities, both positive (i.e., enhanced) and negative (i.e., suppressed), were determined and ranked in order of their cleavage preferences as primary, secondary, or tertiary cleavage effects. For example, primary positive cleavage effects were observed for Xaa-Pro and Asp-Xaa bond cleavage for mobile and nonmobile peptide ion categories, respectively. We also report specific pairwise interactions (e.g., Asn-Gly) that result in enhanced amide bond cleavages analogous to those observed in solution-phase chemistry. Peptides classified as nonmobile gave low or insignificant scores, below reported MS/MS score thresholds (cutoff filters), indicating that incorporation of the relative proton mobility scale classification would lead to improvements in current MS/MS scoring functions.  相似文献   

16.
Thin-layer chromatography (TLC), which is widely used for separation of glycolipids, oligosaccharides, lipids, and compounds of environmental and pharmaceutical interest, can be readily coupled to matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometers, but this arrangement usually compromises mass spectral resolution due to the irregularity of the TLC surface. However, TLC can be coupled to an external ion source MALDI-Fourier transform (FT) MS instrument without compromising mass accuracy and resolution of the spectra. Furthermore, when the FTMS has a vibrationally cooled MALDI ion source, fragile glycolipids can be desorbed from TLC plates without fragmentation, even to the point that desorption of intact molecules from "hot"matrixes such as alpha-cyano-4-hydroxycinnamic acid is possible. In this work, whole brain gangliosides are separated using TLC; the TLC plates are attached directly to the MALDI target, where the gangliosides are desorbed, ionized, and detected in the FTMS with >70 000 resolving power.  相似文献   

17.
Fast screening of low-MW compounds is performed by thin-layer chromatography (TLC) followed by direct on-spot matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification with nearly "matrix-free" mass spectra using an UV-absorbing ionic liquid matrix. Owing to minimal background ions from the proton donor triethylamine/alpha-cyano-4-hydroxycinnamic acid ionic liquid matrix, three arborescidine alkaloids, the anesthesics levobupivacaine and mepivacaine, and the antibiotic tetracycline were readily characterized most frequently by the MS detection of their protonated molecules. The technique is fast and sensitive, requires little sample preparation and manipulation, and is therefore suitable for fast screening with TLC separation and MS identification of low-MW compounds, with potential applications in areas such as phytochemistry, synthetic chemistry, and product manufacturing quality monitoring.  相似文献   

18.
Single aerosol particles of ethylene glycol and oleic acid are vaporized on a heater at temperatures between 500 and 700 K, and the resulting vapor plume is ionized by a 10.5-eV vacuum ultraviolet (VUV) laser. The mass spectra are compared to those obtained by CO2 laser vaporization followed by VUV laser ionization. The relative intensities of the parent and fragment ion peaks are remarkably similar for the two modes of vaporization. A Maxwell-Boltzmann distribution of speeds accurately describes the dependence of the signal as a function of the VUV laser pulse timing. The signal levels obtained with this design are sufficient to obtain good-quality mass spectra.  相似文献   

19.
The ablated particle count and size distribution of four solid matrix materials commonly used for matrix-assisted laser desorption ionization (MALDI) were measured with a scanning mobility particle sizer (SMPS) combined with a light scattering aerodynamic particle sizer (APS). The two particle sizing instruments allowed size measurements in the range from 10 nm to 20 μm. The four solid matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), 4-nitroaniline (NA), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapic acid (SA). A thin film of the matrix was deposited on a stainless steel target using the dried droplet method and was irradiated with a 337 nm nitrogen laser at atmospheric pressure. The target was rotated during the measurement. A large number of nanoparticles were produced, and average particle diameters ranged from 40 to 170 nm depending on the matrix and the laser fluence. These particles are attributed to agglomeration of smaller particles and clusters and/or hydrodynamic sputtering of melted matrix. A coarse particle component of the distribution was observed with diameters between 500 nm and 2 μm. The coarse particles were significantly lower in number but had a total mass that was comparable to that of the nanoparticles. The coarse particles are attributed to matrix melting and spallation. Two of the compounds, CHCA and SA, had a third particle size distribution component in the range of 10 to 30 nm, which is attributed to the direct ejection of clusters.  相似文献   

20.
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号