共查询到18条相似文献,搜索用时 31 毫秒
1.
针对现有隐式反馈算法中正负样本划分不合理、忽略用户操作频次、无法准确建模用户偏好等问题,提出一种基于隐式反馈和加权用户偏好的推荐算法(IFW-LFM)。该算法考虑了用户操作频次与正负样本划分间的关系,学习并改进wALS算法,根据用户操作频次从缺失值中重新挖掘潜在正负样本,将用户操作频次大于1时的样本设置为正样本,用户操作频次为1或0时的样本为正样本或负样本,不再需要人为引入负样本;根据用户操作频次对用户偏好程度的影响,定义了置信度,明确用户偏好,并将其应用在隐因子模型的框架中;利用用户收听歌曲起止时间、收听时长等隐式反馈数据,提高隐式反馈样本利用度。在两个音乐数据集上的对比实验结果说明,该算法在准确率、召回率与NDCG值上与5个经典隐式反馈算法(UserCF、ItemCF、LFM、BPR、SVD)相比最大平均提升了45.81%,83.83%和60.33%,具有更优的推荐效果。 相似文献
2.
3.
作为个性化服务技术的核心,用户模型的质量关系到个性化服务的质量。目前的用户模型大多只考虑用户的显式信息或隐式信息,很少同时考虑两者,使得检索质量不如人意。提出了一种新的基于日志分析的用户个性化模型,结合了传统的显式建模和隐式建模的优点,把显式个性化信息和隐式个性化信息通过两层树状结构结合起来。模型同时考虑了用户历史信息的长短期划分,以及检索系统返回结果的顺序和用户对结果页面的点击顺序。实验结果表明,基于该用户模型的个性化检索效果与原有检索系统的检索效果相比有显著提高。 相似文献
4.
5.
生成对抗网络(Generative Adversarial Nets)是一种融合了生成学习和对抗学习的无监督学习方法,以零和博弈作为核心思想,其组件通过互相对抗不断地提升模型效果.将GAN模型融入到推荐领域中,可有效缓解数据稀疏性问题,提高推荐效果.本文从模型输入的是隐式反馈信息或显式反馈信息两个方面对基于GAN的个性... 相似文献
6.
应用软件的需求获取与应用领域的特征密切相关,用户的参与日益受到重视,然而用户对系统的认识通常模糊且不完整,且对于多用户系统,需要拥有局部需求的多用户进行协同,才能得到完整、一致的需求.提出一种用户主导的需求获取方法,根据用户特征及其上下文环境,为用户进行需求定义提供个性化的领域知识支持,包括领域需求资产推荐和对多用户协同需求获取的建议.应用实例说明了该方法的可行性,且对于提高用户参与程度、改进领域知识重用效果,从而最终提高需求获取的质量具有积极意义. 相似文献
7.
8.
传统的个性化推荐算法普遍存在数据稀疏性问题,影响了推荐的准确度。Slope one算法具有简单、高效等特点,但该算法只是根据用户—项目评分矩阵进行数据分析,对所有用户采用一致性的权重进行计算,忽视了用户对项目类型的喜好程度。针对上述问题进行了研究,提出LR-Slope one算法。首先根据用户—项目评分矩阵和项目类型信息构建用户对项目类型的偏好矩阵;然后利用线性回归模型计算用户对每个类型的权重,采用随机梯度下降算法优化权重;最后结合Slope one算法预测评分,填充评分矩阵,提高推荐的质量。实验结果表明,所提算法提高了推荐的精度,有效缓解了稀疏性问题。 相似文献
9.
郭静菡 《自动化技术与应用》2023,(10):108-112
针对当前个性化音乐智能推荐系统的用户满意度低问题,为此设计面向用户偏好的个性化音乐智能推荐系统。首先采集用户兴趣数据,采用知识本体构建用户个性化音乐兴趣模型,然后采用概率矩阵分解设计个性化音乐推荐算法,最后仿真实验测试系统性能。测试结果表明,系统推荐准确度较高,兴趣吻合度最高可达98.632%,情景吻合度最高可达99.250%,提升了下载与收藏平均精度,实时更新和推荐时延短,实时更新时延低于2 000 ms;实时推荐时延低于600 ms,系统的推荐性能与运行性能都很好。 相似文献
10.
将显式特征与隐式反馈相结合是提高单类协同过滤(OCCF)推荐准确性的常用方法.但目前的研究一般是直接将原始显式特征或交叉特征集成到OCCF模型中,因其难以判断哪些显式特征是真正重要的,故很难获得显著的性能改进.基于此,提出了一种耦合用户公共特征的单类协同过滤推荐算法(UCC-OCCF).首先,建立基于邻居的共同偏好表示... 相似文献
11.
12.
之前有关协同排序算法的研究没有充分利用数据集中信息的问题,要么只侧重于研究显式评分数据,要么只侧重于研究隐式评分数据,目前还没有人运用排序学习的思想把二者结合起来进行研究.针对之前研究的不足,在最新的扩展的少即是好协同过滤(xCLiMF)模型和最经典的变形的奇异值分解(SVD++)算法的基础上,提出了一种融合显/隐式反馈的协同排序算法MERR_SVD++来直接优化排序学习的评价指标ERR.在实际数据集上实验验证,与经典的xCLiMF、Cofi排序(CofiRank)、PopRec、Random算法相比,MERR_SVD++算法在归一化折损累积增益(NDCG)和预期的相关性排序(ERR)这两个评价指标下性能均提高了25.9%以上,而且算法运算时间与评分点个数线性相关.由于MERR_SVD++算法推荐精度高、可扩展性好,因此适用于处理大数据,在互联网信息推荐领域具有广泛的应用前景. 相似文献
13.
显式反馈与隐式反馈相结合,可以有效提升推荐性能.但是现有的融合显式反馈与隐式反馈的推荐系统存在未能发挥隐式反馈数据缺失值反映用户隐藏偏好的能力,或者未能保留显式反馈数据反映用户偏好程度的能力的局限性.为了解决这个问题,提出了一种融合显式反馈与隐式反馈的协同过滤推荐算法.该算法分为两个阶段:第1阶段利用加权低秩近似处理隐式反馈数据,训练出隐式用户/物品向量;第2阶段引入了基线评估,同时将隐式用户/物品向量作为补充,通过显隐式用户/物品向量结合,训练得出用户对物品的预测偏好程度.该算法与多个典型算法在标准数据集上进行了实验比较,其可行性和有效性得到验证. 相似文献
14.
传统的基于评分预测的社会化协同过滤推荐算法存在预测值与真实排序不匹配的固有缺陷,而基于排序预测的社会化协同排序推荐算法更符合真实的应用场景。然而,现有的大多数基于排序预测的社会化协同排序推荐算法要么仅仅关注显式反馈数据,要么仅仅关注隐式反馈数据,没有充分挖掘这些数据的价值。为充分挖掘用户的社交网络和推荐对象的显/隐式评分信息,同时克服基于评分预测的社会化协同过滤推荐算法存在的固有缺陷,在xCLiMF模型和TrustSVD模型基础上,提出一种新的融合显/隐式反馈的社会化协同排序推荐算法SPR_SVD++。该算法同时挖掘用户评分矩阵和社交网络矩阵中的显/隐式信息,并优化排序学习的评价指标预期倒数排名(ERR)。在真实数据集上的实验结果表明,采用归一化折损累计增益(NDCG)和ERR作为评价指标,SPR_SVD++算法均优于最新的TrustSVD、MERR_SVD++和SVD++算法。可见SPR_SVD++算法性能好、可扩展性强,在互联网信息推荐领域有很好的应用前景。 相似文献
15.
融合显式和隐式反馈已被应用于提升推荐模型的性能,但是,现有的此类推荐模型未能保留显式反馈中反映用户偏好程度的信息,且现有研究认为拥有显式反馈的数据和仅拥有隐式反馈的数据对于模型具有同等影响,未能充分发挥显式反馈的优势.针对这些问题,提出一种新的融合显式和隐式反馈的协同过滤推荐模型(CEICF).首先,所提出模型提取显式反馈中的特征得到用户/物品的全局偏好向量;然后,从隐式反馈中提取用户/物品的潜在向量,进而将两种向量进行融合得到用户/物品的偏好向量;最后,使用神经网络预测用户与物品交互的可能性.在训练模型时,定义一种加权的二进制交叉熵损失函数,加强显式反馈对模型的影响来增强模型捕获用户偏好的能力.为了验证所提出模型的有效性,在覆盖不同领域的现实数据集上进行实验,实验结果表明,CEICF可有效地融合显式和隐式反馈,且推荐效果相对于基线模型有显著提升. 相似文献
16.
基于RST的决策树生成与剪枝方法 总被引:1,自引:0,他引:1
基于粗糙集理论构建决策树的过程中,通过计算各条件属性相对某分类的边界,选取边界最小的属性作为当前分支的节点,但此方法在多值分类情况下不能直接应用。为此,本文利用明确区的概念作为选取属性的标准,对各候选条件属性,选取相对于整个结果属性的明确区最大的属性作为当前分支的节点。并且基于明确区的概念,提出了一种新
新的对决策树进行剪枝的方法,通过一个实例说明该剪枝方法是简洁有效的. 相似文献
新的对决策树进行剪枝的方法,通过一个实例说明该剪枝方法是简洁有效的. 相似文献
17.