共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost. Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice. 相似文献
3.
针对工业过程中普遍存在的非线性被控对象,通过最小二乘支持向量机对系统的模型偏差建模,并在此基础上构造非线性补偿器.首先,采用具有RBF核函数的LS-SVM离线建立系统偏差模型,并在系统运行时不断对偏差模型进行在线修正;然后基于此模型在DMC预测控制的基础之上构建补偿器;最后成功应用于智能工厂实验室的多变量液位控制实验装置. 相似文献
4.
5.
考虑蜡沉积影响因素的复杂性和最小二乘支持向量机在小样本预测方面的优势,基于最小二乘支持向量机预测的原理,通过优化最小二乘支持向量机的参数,建立了蜡沉积速率的预测模型,并对蜡沉积速率进行了预测。结果表明:该方法在样本数量较小时仍具有较高的精度,蜡沉积速率的预测值和实验值的吻合程度较好;最小二乘支持向量机建模时可以得到直观的函数表达式,而神经网络方法却不能得到模型的显式表达式,因此该方法具有明显的优势;应用径向基核(RBF)作为核函数时,不同初值的正则化参数?和核函数宽度?对预测结果具有较大影响,使用时应合理选择。 相似文献
6.
针对电站锅炉燃烧系统非线性强、变量间强耦舍及信号噪声大等特点,提出了基于电站历史运行数据的锅炉效率建模方法。根据锅炉燃烧的机理选取关键输入变量,利用偏最小二乘原理(PLS)对其进行特征提取,建立锅炉效率与所提取特征之间的最小二乘支持向量机(LSSVM)关系模型,组成一个PLS-LSSVM混合模型,并利用电站实际数据对模型的准确性进行验证。结果表明:PLS-LSSVM模型相比于PLS模型具有更强的泛化能力,相比于LSSVM模型有更好的运行效率。 相似文献
7.
针对复合肥装置养分含量无法用常规的传感器在线测量的问题,提出了基于最小二乘支持向量机(LS-SVM)的软测量方法来在线估计养分含量.LS-SVM用等式约束代替传统的标准支持向量机中的不等式约束,求解过程从解二次规划问题变成解线性方程组,求解速度相对加快.工业实例表明LS-SVM所建模型的预测精度较高,能满足实际工业应用的需求. 相似文献
8.
9.
基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、预测性能较好、选择参数少等优点,是一种有效的预测单桩极限承载力的方法. 相似文献
10.
最小二乘支持向量机作为数据挖掘新方法,对学习样本质量和数量要求低,学习的泛化性更好.采用最小二乘支持向量机对小样本数据LS-SVMs建立油品调合数学模型,对模型进行仿真试验,结果表明采用LS-SVMs建立的模型精确,并具有良好的泛化性能. 相似文献
11.
Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost. Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas short-term load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction 相似文献
12.
基于M估计器的支持向量机算法及其应用 总被引:4,自引:2,他引:2
训练样本的准确性对回归分析模型有很大的影响,然而训练样本中难免会出现一些造成分析模型失效的奇异点。 为克服奇异点对回归模型的影响,本文提出了一种基于M估计器的支持向量机(M-SVM)。它采用M估计器的目标函数代替最小二乘支持向量机(LS-SVM)目标函数中的残差平方和,同时提出了M-SVM的迭代求解算法,并将该算法应用于含有奇异点的低维仿真数据回归和汽油近红外光谱定量分析中。实验结果证明,相比于其他的支持向量机,M-SVM具有更好的稳健性和分析精度。 相似文献
13.
针对青霉素发酵过程的参数检测存在不确定因素,提出一种基于混沌最小二乘支持向量机的青霉素浓度预测方案。采用混沌优化算法对最小二乘支持向量机参数进行寻优,建立了一种混沌最小二乘支持向量机模型。首先,利用该模型对两种常规非线性函数曲线进行了仿真回归,结果表明,算法具有良好的建模精度;其次,基于Pensim仿真平台,运用文中方法预测青霉素发酵过程的产物量,实验仿真表明混沌优化算法具有良好的全局优化性能,在参数选择中可以有效避免陷入局部最小值,基于混沌优化的最小二乘支持向量机具有较高的建模精度。 相似文献
14.
在线最小二乘支持向量机及其在C8芳烃异构化建模中的应用 总被引:5,自引:0,他引:5
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the projection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable. 相似文献
15.
基于证据框架的最小二乘支持向量机在精对苯二甲酸生产中的应用 总被引:7,自引:5,他引:2
支持向量机是一种基于统计学习理论的新型机器学习方法.本文给出一种考虑损失函数的噪声模型参数β的贝叶斯证据框架最小二乘支持向量机回归算法,通过贝叶斯证据框架自动调整正则化参数和核参数,更好地实现了最小化误差和模型复杂性之间的折中.将提出的算法用于精对苯二甲酸(purified terephthalic acid,PTA)生产过程中的关键指标对羧基苯甲醛(4-carboxybenzaldhyde,4-CBA)含量的预测中,能很好地跟踪4-CBA含量的变化趋势,泛化能力较强,为4-CBA含量的实时预测提供了很好的解决方案. 相似文献
16.
局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 总被引:5,自引:5,他引:0
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR, LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。 相似文献
17.
软测量技术是解决工业过程中存在的一类难以在线测量参数估计问题的有效方法,该技术的核心是建立优良的数学模型。支持向量机是基于统计学理论的一种机器学习方法,最小二乘支持向量机是一种扩展的支持向量机,相对于支持向量机具有较快求解速度。最小二乘支持向量机存在着参数选择的问题,针对这个问题,采用差分进化算法进行参数选择。提出基于差分进化算法的最小二乘支持向量机应用于软测量建模,并将其应用于对苯二甲酸中对羧基苯甲醛含量测试的软测量建模中,获得了满意的结果。 相似文献