首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated the glide of strain-relaxing dislocations in closely lattice matched, liquid phase epitaxially (LPE) grown, HgCdTe. A generalized LPE heterostructure was modeled based on secondary-ion mass spectroscopy (SIMS) profile measurements. Critical thickness was predicted using a force balanced method which expands upon the work recently developed by Ayers. The behavior of dislocation dynamics is predicted with respect to exponentially and linearly graded metallurgical interfaces intrinsic to the high- temperature LPE growth process. The extended Ayers model is compared against x-ray topography and cross-sectional observations of misfit dislocations by the decoration of etch pits on cleaved HgCdTe/CdZnTe. The model predicts that, for bulk Cd/Zn compositions which are nearly lattice matched, the Zn compositional profile plays an important role in determining both the onset and distribution of misfit dislocations.  相似文献   

2.
We have studied the use of overshoot graded layers for the control of the dislocation density in mismatched heteroepitaxial layers. Graded ZnS y Se1–y structures were grown on GaAs (001) by photoassisted metalorganic vapor-phase epitaxy (MOVPE) and characterized by high-resolution x-ray diffraction (HRXRD). All samples had a uniform top layer of ZnS0.014Se0.986, and various graded layers were incorporated between the substrate and the uniform top layer; these included forward-graded (FG) and reverse-graded (RG) buffers. Some structures incorporated overshoot at the interface with the uniform top layer (FGO and RGO buffers). Among the FG samples, those with overshoot exhibited better crystal quality and lower dislocation densities than those without. This is expected because the mismatched interface between the graded layer and the top ZnS0.014Se0.986 can affect the bending over of threading dislocations for the production of misfit dislocations, indirectly promoting annihilation and coalescence reactions. An overshoot interface with 0.1% mismatch was found to remove 2 × 108 cm−2 dislocations from the top device layer. Overshoot did not reduce the dislocation density in RG structures, but this may be because the sign of the overshoot caused the generation of new dislocations rather than interactions between existing ones. For growing a high-quality device layer with minimal defect density, it appears that steep forward-graded layers with overshoot may be best in this material system.  相似文献   

3.
Based on the Lambert W-function, an exact analytical solution for the critical thickness of a lattice-mismatched heteroepitaxial layer is presented. The new expression in exact and algebraic closed form eliminates the need for complex iterative computation. Its high accuracy is proved by comparison of the calculated critical thickness versus fractional atomic content of an alloy epilayer with the respective numerical solution.  相似文献   

4.
We have conducted a theoretical study of the equilibrium strain and misfit dislocation density profiles for ??S-graded?? buffer layers of In x Ga1?x As on GaAs (001) substrates in which the compositional profile follows a normal cumulative distribution function. On the basis of this modeling work we show that the S-graded layer exhibits misfit dislocation-free regions near the substrate interface and the free surface (or device interface). The equilibrium peak misfit dislocation density as well as the thicknesses of the dislocation-free regions may be tailored by design of the compositional profile; this in turn should enable minimization of the density of electronically active threading dislocations at the top surface. S-graded buffer layers may therefore facilitate the achievement of metamorphic device structures with improved performance compared with similar structures having uniform or linearly graded buffers.  相似文献   

5.
GexSi1—xSi应变层和超晶格及其临界厚度   总被引:1,自引:0,他引:1  
罗江财 《半导体光电》1993,14(1):35-40,47
异质外延层的性能和质量,往往取决于异质结构的特性。文章讨论了Ge_xSi-(1-x)/Si 应变层和应变层超晶格中的应变、位错和临界厚度,并比较了实验结果。  相似文献   

6.
This work describes an analytical model that predicts the effects of property gradients on the energy conversion efficiency of a functionally graded thermoelectric material (FGTEM) with an exponentially varying Seebeck coefficient S, electrical resistivity ρ, and thermal conductivity k. The figure-of-merit parameter, Z = S 2/(ρk), thus also varies exponentially. A closed-form solution for the temperature distribution in the FGTEM and the efficiency as a function of current density are obtained. The peak efficiency and the optimal current density are determined from the efficiency solution. It is found that the efficiency may be increased by about 30% using appropriate property gradients.  相似文献   

7.
Dislocations are known to influence the electrical and optical properties of long-wavelength infrared (LWIR) HgCdTe detectors and have been shown to limit the performance of arrays fabricated on heteroepitaxial substrates. To help better understand dislocations in HgCdTe, a new method for preparing HgCdTe diagnostic epitaxial single-crystal samples by chemically removing the supporting CdZnTe substrate has been developed. Using this new sample preparation technique, the behavior of misfit and threading dislocations in HgCdTe epitaxial layers has been investigated by using a defect etch to reveal the dislocations present in the thin HgCdTe films. In most cases etch pits on the surface of the film are spatially correlated with etch pits on the bottom of the HgCdTe film. The small displacements of the related etch pits were used to obtain crystallographic information concerning the paths followed by threading dislocations on allowed slip planes in the HgCdTe crystal. In addition, transmission electron microscopy (TEM) is used to obtain more specific information regarding the Burgers vector of the dislocation. While this new sample preparation technique is useful for studying dislocations in HgCdTe epitaxial layers, it can also be used to study stress from ohmic contacts and passivation layers. The technique can be used for both liquid-phase epitaxy (LPE)- and molecular-beam epitaxy (MBE)-grown HgCdTe on CdZnTe substrates.  相似文献   

8.
采用室温Raman散射和低温光致发光(PL)谱,对以TMG,固体As和固体In作为分子束源的MOMBE法生长的GaAs/In_xGa_(1-x)As(x=0.3)单层异质结构和多量子阱结构中InGaAs应变层的临界厚度进行了实验研究。由应变引起的Raman散射峰位移,以及PL谱峰位置与应变和无应变状态下一维有限深势阱跃迁能量计算结果的比较可见,在In组分含量x=0.3的情况下,临界厚度H_c≤5nm,小于能量平衡理论的结果,而与力学平衡模型的理论值相近。  相似文献   

9.
硅外延是一种性能优良的半导体材料,在IGBT、大功率器件等领域中有着广泛的应用。FTIR(Fourier—Transform Infrared Spectrophotometry)技术是目前普遍采用的测量硅外延层厚度的先进方法,具有准确、快速、稳定、无损伤等其他方法无可比拟的优势。FTIR方法对于常规的低掺杂双层外延结构,只能测出两层外延的总厚度,而不能测出两个外延层分别的厚度。文章通过试验数据,证明了FTIR测试方法能够同时测量双层外延层结构的硅外延片的两层厚度,并提出了对中间层外延的电阻率的要求,同时对ASTM—F95标准中提出的FTIR法测量硅外延层厚度时对外延层和衬底层电阻率的要求,提出了新的范围。  相似文献   

10.
通过化学气相沉积法,采用不同生长工艺在4°偏角4H-SiC衬底上制备p型4H-SiC同质外延片。提出了p型4H-SiC同质外延中有效层厚度的概念,研究发现导致外延有效层厚度减少的直接原因是自掺杂效应的存在。采用傅里叶红外光谱仪(FT-IR)、汞探针电容电压(Hg-CV)和表面缺陷测试仪对p型4H-SiC同质外延片进行表征,讨论了不同工艺对外延有效层厚度的影响。结果表明,采用隔离法和阻挡层法均能提高外延有效层厚度,且掺杂浓度随距表面深度变化斜率值由1.323减小到0.073。然而,阻挡层法斜率值能进一步优化至0.050,是由于有效抑制了外延中固相和气相自掺杂。对比于优化前工艺,采用阻挡层法制备的p型4H-SiC同质外延片厚度不均匀性和表面总缺陷数量处于同一水平,掺杂浓度不均匀性由2.95%改善到2.67%。综上,采用阻挡层法能够制备出高有效层厚度、高一致性和高质量的p型4H-SiC同质外延片。  相似文献   

11.
制备超薄多层膜的自动转速控厚法   总被引:1,自引:2,他引:1  
在转速控厚法的基础上 ,排除了射频溅射的电磁干扰 ,实现了自动转速控厚法。用这种方法镀制超薄多层膜时 ,可以实时记录下镀制每层膜的沉积时间、自动切换转速、完成设定周期后自动停止转动。自动转速控厚法与转速控厚法相比 ,明显降低了多层膜制备的劳动强度 ,提高了多层膜制备的成品率和监控精度。而且将在镀制复杂膜系多层膜时 ,具有更加明显的优势  相似文献   

12.
采用真空蒸发法制备了双层结构(ITO/NPB(15nm)/AlQ(x)/Mg:Ag)有机电致发光器件(OLED)。测试分析了8-羟基喹啉铝(AlQ)厚度对OLED的B-V、J-V和η-V特性的影响,结果表明AlQ厚度对OLED器件的性能有显著的影响;当AlQ厚度在40nm时器件的发光亮度、发光效率以及稳定性都是最佳,但是当厚度变化时对光谱影响不大。  相似文献   

13.
The Ni/solder/Cu material sequence is one of the most common material sequences in the solder joints of electronic packages. In this study, the Ni/Sn/Cu ternary diffusion couples were used to investigate the solder volume effect on the cross-interaction between Ni and Cu. Experimentally, a pure Sn layer with the thickness of 100–400 μm was electroplated over Cu foils. A pure Ni layer (20 μm) was then deposited over the as-deposited Sn surface. The diffusion couples were aged at 160°C for different periods of time. With this technique, the diffusion couples were assembled without experiencing any high temperature process, such as reflow, which would have accelerated the interaction and caused difficulties in analysis. This study revealed that the cross-interaction could occur in as short as 30 min. A detailed atomic flux analysis showed that the Cu flux through the Sn layer was about 25–40 times higher than the Ni flux. Moreover, it was found that (Cu1−x Ni x )6Sn5 on the Ni side reduced the consumption rate of the Ni layer, and the cross-interaction also reduced the Cu3Sn thickness on the Cu side.  相似文献   

14.
In this paper, we present the experimental results on wafer-to-wafer and within-wafer critical dimension (CD) control. It is known that photoresist thickness affects CD. In this paper, we control photoresist thickness to control CD. As opposed to run-to-run control where information from the previous wafer or batch is used for control of the current wafer or batch, the approach here is real time and makes use of the current wafer information for control of the current wafer CD. The experiments demonstrate that such an approach can reduce CD nonuniformity wafer to wafer and within wafer.  相似文献   

15.
Smooth GaN layers were successfully grown on metallic TiN buffer layers by metalorganic chemical vapor deposition (MOCVD). One important factor in controlling GaN layer smoothness was the TiN layer thickness. We investigated systematically the effects of this thickness, and found an optimal thickness of 5 nm, at which the smallest average grain size (20 nm) and smoothest surface were obtained. The TiN layers increased surface coverage with GaN hexagons at an early stage of GaN growth, indicating that enhancing the GaN nucleation is essential for smooth GaN layer growth, and small grain size and smooth surface are needed to enhance GaN nucleation. Further reduction in TiN layer thickness to 2 nm decreased the surface coverage with GaN hexagons, and a high density of grooves and holes were observed in the surface of the 2-μm-thick GaN layers. Defect structures in the GaN layers grown on the TiN layers were remarkably changed on reduction of TiN layer thickness from 5 nm to 2 nm. GaN growth was found to be sensitive to the TiN layer thickness between 2 nm and 5 nm.  相似文献   

16.
Tin is widely used as a coating material for copper metal in the electronics industry where tin whisker growth is a concern because it affects the reliability of electronic devices. Because whisker growth reduces joint reliability, it is important to monitor the growth of Cu3Sn and Cu6Sn5, which is usually done by using an X-ray diffraction method to estimate the thickness of the tin layer. In this study, we use the sequential electrochemical reduction analysis (SERA) technique to measure the thickness of layers of pure tin, Cu6Sn5, and Cu3Sn. We also discuss the depletion rate of tin layers at high-temperature aging and the growth of these intermetallics.  相似文献   

17.
Cross-section electron micrographs, cathodoluminescence images, and confocal photoluminescence (cPL) images have been acquired for ZnTe layers deposited to various thicknesses on GaSb substrates with (211)B and (100) orientations. The critical thickness of ZnTe on GaSb is predicted to range between 115 nm and 329 nm, depending on the theoretical approach chosen. For ZnTe layers grown on (211)B GaSb with thickness exceeding 150 nm, dark spots and lines are present in all images. We associate these with dislocations generated at the ZnTe/GaSb interface. The discrepancy between this thickness value and a critical thickness value (350 nm to 375 nm) obtained for the (211)B orientation in a previous study is related to the distinction between the onset of misfit dislocations and the onset of significant plastic deformation. The former requires a direct imaging technique, as strain-related measurements such as x-ray diffraction do not have the resolution to detect the effects of small numbers of dislocations. For ZnTe layers on (100) GaSb, x-ray diffraction measurements indicate an abrupt change characteristic of dislocation multiplication at a thickness value in the range from 250 nm to 275 nm. High-resolution electron micrographs of the ZnTe/GaSb interface indicate that deoxidation using atomic hydrogen produces GaSb surfaces suitable for ZnTe epitaxy. cPL images of a 1.2-μm-thick lattice-matched ZnTe0.99Se 0.01 layer grown on a 150-nm-thick ZnTe buffer layer on a (211)B GaSb substrate yield a threading dislocation density of ~7 × 104 cm?2.  相似文献   

18.
采用四氯化硅氢还原法在钟罩立式高频加热外延炉内掺杂锑的硅衬底上制备了特高阻双层结构(n_2~-/n_1~-/n~+)外延片,n_2~-层电阻率~150Ω·cm,n_1~-层电阻率~50Ω·cm,外延层总厚度达60μm时仍不产生冠状边沿,结晶完美。用于制作BSIT,得到非常满意的结果。  相似文献   

19.
薄层厚度的同态处理测量法   总被引:2,自引:0,他引:2  
对于薄层厚度的测量,在工程及科学研究中均有十分广泛的应用。本文针对精确测量薄层厚度的要求。提出了一种新的同态信号处理方法。这种方法的基本原理是对被测信号的能量谱的对数导数进行傅里叶反变换,得出其在时域的包络,从包络中得出其所需的时间延迟信息,从而得到薄层的厚度。与其他测量厚度的信号处理技术相比,其精度和测量的厚度极限及抗干扰性能均有很大提高,显示了很好的发展前景。  相似文献   

20.
用分子束外延方法制备了具有GaInAs组分渐变缓冲层和不具有GaInAs组分渐变缓冲层的Ga0.9In0.1As/GaAs结构的外延材料。利用高分辨率X射线衍射法(HRXRD)对制备的两种样品分别进行了测试分析。实验结果表明,GaInAs组分渐变缓冲层对外延生长在GaAs衬底上的Ga0.9In0.1As外延材料的晶体质量具有显著的改善作用,极大降低了由于外延层与衬底晶格不匹配所带来的影响。从X射线倒易空间衍射(RSM)二维图谱结果来看,具有GaInAs组分渐变缓冲层结构的样品,其Ga0.9In0.1As外延层与GaInAs组分渐变缓冲层接近完全弛豫,Ga0.9In0.1As外延层的应变降低,表面残留应力小于0.06%,同时,GaAs衬底与Ga0.9In0.1As外延层之间的偏移夹角明显变小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号