共查询到19条相似文献,搜索用时 78 毫秒
1.
基于邻域粗糙集的支持向量机分类方法研究 总被引:2,自引:0,他引:2
针对支持向量机方法对高维大规模数据无法直接处理和对异常样本敏感的问题,提出了一种基于邻域粗糙集模型的改进支持向量机。该算法从两个方面对训练样本集进行预处理:一方面利用邻域粗糙集模型中对象邻域的上、下近似,寻找两种类别的交界部分,从而减小问题规模;然后通过对交界部分样本进行混淆度分析,剔除那些混杂在另一类样本中的异常样本或噪声数据。另一方面利用属性重要性度量对样本集进行属性约简与属性加权处理。基于合成数据集与标准数据集的有关实验证实了该算法的有效性。 相似文献
2.
运用邻域粗糙集理论,对储层含油性的属性进行约简,并将约简后的属性作为支持向量机输入变量,对某油田的3口井油层类别进行实证研究,将结果与人工神经网络方法进行了比较,结果表明该方法是行之有效的方法。具体步骤为:先把邻域粗糙集作为前置系统对属性进行约减,剔除冗余信息,将剩余的属性作为支持向量机的输入变量。而支持向量机作为后置系统,不仅能消除指标之间信息重叠,而且可以降维。它们之间各司其责,相互配合从而得到好的评价结果。 相似文献
3.
基于粗糙集与支持向量机的故障智能分类方法 总被引:5,自引:0,他引:5
结合粗糙集的属性约简与支持向量机的分类功能,提出一种应用粗糙集与支持向量机的故障分类方法。该方法应用粗糙集理论属性约简作为诊断数据预处理器,可将冗余属性从诊断决策表中删除,而不损失有效信息,然后基于支持向量机进行故障分类建模和预测。谊方法可降低故障诊断数据维数及支持向量机在故障分类过程中的复杂度,但不会降低分类性能。将方法应用于某柴油机故障诊断数据的测试分类,结果表明该方法可快速正确的从数据获得故障类剐。 相似文献
4.
一种基于粗糙集和支持向量机的混合分类算法 总被引:5,自引:0,他引:5
结合粗糙集的属性约简和支持向量机的分类机理,提出了一种混合算法。应用粗糙集理论的属性约简过程作为预处理器,可以把冗余的属性和冲突的对象从决策表中删去,但不损失任何有效信息;然后基于支持向量机进行分类建模和预测。这样可以大大降低数据维数,降低支持向量机分类过程中的复杂度,减少占用的存储空间,并在不同程度上避免了训练模型的过拟合现象,但分类性能并不会隆低.最后的仿真实例说明了所提方法的有效性. 相似文献
5.
构造了一种基于粗糙集理论的医疗诊断决策信息系统,根据该系统中条件属性的冗余相关性,采用遗传算法对决策系统的条件属性进行约简,达到约简效果最优,降低诊断难度,提高诊断速度;并提出了一种基于规则置信度的规则融合方法,提高诊断准确率。通过实验证明该方法有效可行。 相似文献
6.
邻域粗糙集可以直接处理数值型数据, F- 粗糙集是第一个动态粗糙集模型. 针对动态变化的数值型数据, 结合邻域粗糙集和F- 粗糙集的优势, 提出了F- 邻域粗糙集和F- 邻域并行约简. 首先, 定义了F- 邻域粗糙集上下近似、边界区域; 其次, 在F- 邻域粗糙集中提出了F- 属性依赖度和属性重要度矩阵; 根据F- 属性依赖度和属性重要度矩阵分别提出了属性约简算法, 证明了两种约简方法的约简结果等价; 最后, 比对实验在UCI数据集、真实数据集和MATLAB生成数据集上完成, 实验结果显示, 与相关算法比较, F- 邻域粗糙集可以获得更好的分类准确率. 为粗糙集在大数据方面的应用增加了一种新方法. 相似文献
7.
8.
针对遗传算法(GA)与支持向量机(SVM)集成相结合的疾病诊断方法存在属性冗余的问题,提出了一种改进的约简和诊断乳腺癌决策方法。该方法将最小化约简属性个数、最大化区分矩阵可区别属性的个数以及最大化约简属性对决策属性的依赖度这三种目标函数相结合作为GA的适应度函数。在约简属性后取多个子集,以便利用SVM集成学习。在UCI数据库中乳腺癌数据集的实验表明,与原始的SVM算法相比,该方法在分类诊断的准确度以及敏感性方面有一定的提高,其中分类准确度至少提高了2%。 相似文献
9.
针对图像型火灾探测方法检测准确度和实时性间的矛盾,提出了基于粗糙集的火灾图像特征选择和识别算法。首先通过对火焰图像特征的深入研究发现,在燃烧能量的驱动下火焰的上边缘极不规则,出现明显的震动现象,而下边缘却恰恰相反; 基于此特点,可利用上下边缘抖动投影个数比作为火焰区别于边缘形状较规则的干扰。然后,选择火焰的6个显著特征构造训练样本,在火灾分类能力不受影响的前提下,使用实验所得的特征量归类表对训练样本进行属性约简,并将约简后的信息系统属性训练支持向量机模型,实现火灾探测。最后与传统支持向量机火灾探测算法做了比较。实验结果表明:将粗糙集作为支持向量机分类器的前置系统,把粗糙集理论的属性约简引入到支持向量机中,可以大大消除样本集冗余属性,降低了火灾图像特征空间的维数,减少了分类器训练和检测数据,在保证识别精度的同时,提高了算法的速度和泛化能力。 相似文献
10.
对基于邻域粗糙集的属性约简算法而言,正域计算是保证其有效性的重要依据,也是影响其时间开销的最主要部分。正域计算的速度主要由样本间度量计算的次数决定。在确保正确性的条件下,样本间度量计算的次数越少,则正域计算越快。在现有的正域计算中,通常存在着大量同类别样本间的度量计算。针对这个现象,首先证明在邻域粗糙集的正域计算中,同类别样本间的度量计算对正域计算是无贡献的,然后据此提出了基于样本类别的正域计算。和现有的正域计算相比,实验结果表明,该正域计算有效且更快速。而且,该正域计算更适用于样本类别数较少的数据集。 相似文献
11.
魏晓云 《数字社区&智能家居》2007,3(7):157-159
本文介绍了粗糙集的基本理论,及基于粗糙集的知识获取理论模型,并运用这一模型对银行信贷模型进行了分析,通过决策表约简,剔除冗余属性、消除过剩规则,最后得出了属性约简的最小化结果以及决策规则。 相似文献
12.
魏晓云 《数字社区&智能家居》2007,(13)
本文介绍了粗糙集的基本理论,及基于粗糙集的知识获取理论模型,并运用这一模型对银行信贷模型进行了分析,通过决策表约简,剔除冗余属性、消除过剩规则,最后得出了属性约简的最小化结果以及决策规则. 相似文献
13.
基于粗糙集和支持向量机的机械故障诊断系统 总被引:4,自引:0,他引:4
提出了一种基于粗糙集和支持向量机(SVM)的机械故障诊断系统:首先将故障诊断决策系统中的连续属性值离散化;再基于粗糙集理论计算决策系统的约简,根据实际需要确定最优决策系统;最后在最优决策系统基础上设计SVM多分类器进行故障诊断。4135柴油机的实际故障诊断结果验证了所提出的粗糙集理论与SVM相结合的故障诊断系统的可行性。 相似文献
14.
基于邻域粗糙集的多标记分类特征选择算法 总被引:4,自引:0,他引:4
多标记学习是一类复杂的决策任务,同一个对象可能同时属于多个类别.此类任务在文本分类、图像识别、基因功能分析等领域广泛存在.多标记分类任务往往由高维特征描述,存在大量无关和冗余的信息.目前已经提出了大量的单标记特征选择算法以应对维数灾难问题,但对于多标记的属性约简和特征选择却鲜有研究.将粗糙集应用于多标记数据的特征选择中,针对多标记分类任务,重新定义了邻域粗糙集的下近似和依赖度计算方法,探讨了这一模型的性质,进而构造了基于邻域粗糙集的多标记分类任务的特征选择算法,并给出了在公开数据上的实验结果.实验分析证明算法的有效性. 相似文献
15.
贝叶斯统计推断方法是故障诊断技术领域一项重要的技术,在统计模式识别领域具有广泛的应用;针对朴素贝叶斯方法的缺点,提出了基于粗集理论的贝叶斯诊断方法,该方法利用历史诊断记录,综合考虑故障征兆和故障原因之间的依赖关系,基于粗集方法进行了故障征兆属性信息的约简,得到了故障征兆和故障原因的最小描述;通过属性约简,改善了贝叶斯方法中要求的属性信息之间的独立性限制,实验结果表明,基于粗集理论的贝叶斯故障诊断方法对于简化诊断模型,减少算法执行时间,提高诊断速度具有重要作用. 相似文献
16.
为了避免连续数据离散化处理时造成的信息损失,降低样本属性邻域求解的复杂度,提高特征基因提取的效率。该文在单调度量空间上,提出了一种基于单调邻域粗糙集的特征基因提取方法。并在两个标准的基因表达数据上进行了实验,结果证明该方法是有效可行的。 相似文献
17.
提出了一种基于Rough集理论的Self集构造和演化算法。利用Rough集约简算法,对用户的安全访问行为的数据作规范化处理并进行约简,从中提取有效的最简规则,降低了安全数据的冗余,减轻了特征码构造的负担。使用Rough集上、下近似集原理,构造了上、下近似Self集,实现了Self的优化和扩展,有效地解决了Self集的自动演化问题。 相似文献
18.
为了解决传统识别技术在车牌字符识别时效率低的问题,本文提出了一种基于粗糙集高效属性约简算法的快速车牌识别技术,该方法首先根据训练样本集的特征向量建立决策表并对决策表进行二次离散化处理,然后应用粗糙集理论对决策表进行高效属性约简,最后从约简后的决策表中获取决策规则,按照规则可信度的大小进行规则的匹配。实验表明该方法有效地压缩了图像的特征数,并简化了规则匹配算法,提高了字符识别率及识别速度,在车牌字符识别中取得了较好的识别效果。 相似文献
19.
提出了一种基于Rough集理论的Self集构造和演化算法。利用Rough集约简算法,对用户的安全访问行为的数据作规范化处理并进行约简,从中提取有效的最简规则,降低了安全数据的冗余,减轻了特征码构造的负担。使用Rough集上、下近似集原理,构造了上、下近似Self集,实现了Self的优化和扩展,有效地解决了Self集的自动演化问题。 相似文献