首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用多尺度建模方法建立了考虑钢材高温蠕变的三层三跨钢梁-钢管混凝土柱平面框架火灾全过程热-力耦合数值模型,研究不同火灾工况下平面框架经历常温加载、恒载升温、降温和火灾后等不同受火阶段的力学性能。在与已有试验对比验证的基础上,分析了框架经历升温和降温后受火钢梁跨中挠度和受火柱顶轴向变形与升降温时间关系,计算了火灾后框架底层柱底水平荷载P-框架顶层水平位移Δ关系曲线。研究结果表明:钢材的高温蠕变是钢材在热力耦合作用下应变的一部分,计算过程中需要考虑其影响;钢梁在升温过程中由于高温膨胀对框架柱产生外推作用,而进入降温阶段后钢梁产生明显的收缩变形;框架底层三跨同时受火时钢梁跨中挠曲变形最大,受火初期柱顶轴向压缩变形小于膨胀变形;受火后框架水平承载力和初始刚度均随受火区域的增大呈下降趋势。  相似文献   

2.
The high strength to weight ratio and high stiffness to weight ratio of stiffened plates find wide application in aircraft structures, ship structures, offshore oil platforms and lock gates. The strength and stability of stiffened plates is highly influenced by openings and initial imperfections. The main objective is to study the behaviour of stiffened steel plates with openings up to collapse and to trace the post-peak behaviour under axial and out-of-plane loads. Four stiffened steel plates with a square opening were fabricated for testing. Angle sections were used as stiffeners. Imperfections in the plate, stiffener and overall imperfection of the whole panel were measured. All fabricated panels were tested to failure. A finite element (FE) model was developed for the analysis of stiffened plates with initial imperfections and validated with the test results. Parametric studies were conducted using the developed FE model, and interaction curves and equations were developed for the design of stiffened plates with initial imperfections and openings. The interactive effect for stiffened panels with a square opening was found to be linear, with proportional reduction of the ultimate axial load carrying capacity due to the constant out-of-plane load.  相似文献   

3.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

4.
高强钢高温下和高温后的力学性能是进行高强钢结构抗火设计和火灾后评估的重要基础。我国GB 51249—2017《建筑钢结构防火技术规范》和欧洲规范EC3中针对普通低碳钢提出了高温下屈服强度和弹性模量计算公式,但其不适用于高强钢。国内外学者对高温下和高温后高强钢力学性能已开展了一系列试验研究,但由于钢材强度等级、试验设备、加热速率和加载制度等影响,导致试验结果离散性较大,不能应用于实际工程中。同时不同学者提出的力学性能指标计算式各不相同,均不具有普遍适用性。采用数理统计中t分布与置信区间的方法对高强钢高温下和高温后力学性能试验数据进行统计分析,得到不同温度下力学性能指标具有95%保证率的标准值,拟合出高强钢高温下和高温后力学性能指标的计算式,并与GB 51249—2017和欧洲规范EC3预测结果进行对比。结果表明:自然冷却和浸水冷却条件下,高强钢高温后屈服强度发生明显下降的转折点分别是600℃和 500℃;高温下高强钢的屈服强度折减系数低于普通结构钢;高强钢弹性模量折减系数在作用温度小于600℃时低于普通结构钢的,而在温度大于600℃时高于普通结构钢的。  相似文献   

5.
Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 °C, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress–strain curves and associated mechanical properties (yield stress, Young׳s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 °C. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.  相似文献   

6.
Experimental research has been conducted to study the mechanical behavior of two full-scale steel planar tubular trusses without fire-proof coating under fire conditions. The research aims to investigate the failure modes and temperature distribution of the steel planar tubular truss at elevated temperatures, as well as to validate the numerical related model. The experimental results demonstrate that the failure of the specimens was caused by local buckling of the brace members.  相似文献   

7.
强约束轴心受压钢管柱耐火性能试验研究   总被引:2,自引:0,他引:2  
为正确评估强约束钢管柱的耐火性能,利用自行研制的杆系结构构件温度轴力测量装置,采用恒载升温试验方法,设5级初应力水平,6种长细比,对30根Q345钢管柱进行试验研究,揭示轴心受压钢管柱在强约束下的耐火性能。试验结果表明:强约束钢管柱在温升作用下的温度应力相当大,对钢管柱破坏有决定性作用,在耐火设计与评估中必须考虑。钢管柱在高温作用下,破坏前其弹塑性性质较为明显。相同长细比的构件,在较高的初始应力水平作用下,极限承载力大、温度应力小、临界温度低;反之相反。在相同初应力水平下,长细比对强约束钢管柱的极限承载力和温度应力的影响并不敏感,但长细比大的试件为失稳破坏,破坏后变形很大;长细比较小的试件为强度破坏,破坏后变形较小。以试验数据为基础给出两端固定Q345钢管柱的下限临界温度回归计算公式,可用于火灾中约束刚度不变的钢结构耐火设计与评估。  相似文献   

8.
为研究不同复合比下不锈钢复合钢材在地震循环往复荷载作用下的力学特性,开展23个3+3mm厚316L+Q235B不锈钢复合钢材试件的单调拉、压和15种不同循环加载制度下的试验。根据试验结果,分析该类复合钢材的单调性能、滞回性能以及宏观和微观破坏形态;基于Ramberg-Osgood三参数模型拟合循环骨架曲线,并讨论其与单调荷载下的力学性能区别;基于Chaboche模型标定该不锈钢复合钢材的本构模型参数,并采用数值模型对其他循环加载制度下的力学响应进行模拟;最后与3+5mm厚316L+Q235B不锈钢复合钢材在循环骨架曲线、循环本构关系及滞回曲线方面进行对比,分析复合比的影响。试验结果与分析表明:该种复合比的不锈钢复合钢材在循环荷载下仍表现出明显的循环强化作用和混合强化(等向强化和随动强化)特征;滞回曲线饱满;随着循环周次的增加,卸载刚度和再加载曲线的初始刚度出现明显退化;Ramberg-Osgood模型可以较好地对其循环骨架曲线进行拟合;文章提出的循环本构模型能够准确模拟该复合比不锈钢复合钢材循环往复荷载作用下的力学响应;该复合钢材与3+5mm厚316L+Q235B不锈钢复合钢材在循环荷载下的具体力学指标存在明显区别。研究成果为提出双金属复合钢材的统一循环本构模型提供重要基础。  相似文献   

9.
为了得到高强度Q460钢梁高温下的抗火性能,采用有限差分法推导了高温下高强度Q460钢梁的截面温度计算方法并计算了温度分布,提出了钢梁各个组件温度的修正公式。基于常温下钢梁的整体稳定临界弯矩,根据Q460钢材的高温力学性能参数,分析得到了高强度Q460钢梁高温下临界弯矩和整体稳定验算参数;并利用等效刚度法考虑了温度不均匀分布的影响,研究了高强度Q460钢梁在不均匀温度下的极限承载力、临界温度和稳定系数。  相似文献   

10.
基于实用大空间火灾空气升温经验公式及预应力钢结构材料高温力学模型,采用考虑时间积分效应的非线性有限元数值分析法,建立了用于大跨度弦支穹顶结构抗火性能分析的数值模型。通过对大跨度弦支穹顶结构的抗火分析,研究结构的温度场分布、位移和应力特征以及支座约束条件对结构抗火的影响。分析结果表明:在火灾作用下,大跨度弦支穹顶结构具有较好的抗火性能,结构的抗火薄弱区域位于上层网壳的中心区域;火灾下引起弦支穹顶结构产生较大变形的主要原因是环向约束作用、材料升温膨胀以及结构刚度的降低。  相似文献   

11.
Due to the high sensitivity of fire affected steel behavior, fire resistance of steel structures is of great importance. Moreover, since the connections act as the main means of integration of frame members, the behavior of steel connections in fire is significantly important. Considering the importance of this matter, this paper describes a spring-stiffness model developed to predict the behavior of welded angle connections made of bare-steel at elevated temperature. The joint components are considered as springs with predefined mechanical properties i.e. stiffness and strength. The elevated temperature joint’s response can be predicted by assembling the stiffness of the components which are assumed to degrade with increasing temperature based on the recommendations presented in the design code. Comparison of the results from the model with existing experimental data shows good agreement. The proposed model can be easily modified to describe the elevated temperature behavior of other types of joints as well as joints experiencing large rotations.  相似文献   

12.
采用ABAQUS有限元软件,建立了火灾作用下内配型钢方钢管混凝土轴压柱耐火性能的有限元模型,验证了有限元模型的可靠性。在保证钢材总含钢率不变的前提下,对钢管和内配型钢进行分配,对比分析了两种截面形式柱常温承载力和耐火极限。对钢管含钢率、型钢含钢率以及钢材材料强度进行了分析,并对不同截面总含钢率下钢管含钢率分配比例对耐火极限的影响进行了计算和分析。结果表明:保持总含钢率不变,将钢管中部分钢材以型钢的形式置于混凝土中,常温下承载力略有降低,但火灾下耐火极限提高甚为显著;当钢管含钢率占截面总含钢率的50%~60%时,常温下承载力和火灾下耐火极限均能得到充分的发挥。  相似文献   

13.
提出一种平面内剪切型软钢阻尼墙,通过对其进行基本力学性能试验和疲劳性能试验,分析该软钢阻尼墙的减震性能。考虑到实际工程应用中阻尼墙会发生平面外变形,设计具有平面外初始偏心的阻尼墙试件,研究其在偏心受力时的减震性能变化规律。结果表明,该软钢阻尼墙在平面外偏心情况下仍表现出良好的滞回性能和疲劳性能,但受偏心影响,阻尼墙试件的初始刚度、等效刚度、耗能量及耗能比等较平面内试件均有不同程度的下降;对比阻尼墙的基本力学性能,其疲劳性能受偏心荷载的影响更大,偏心受力试件较平面内试件的屈服荷载和耗能量的降幅均超过6%。数值模拟分析表明,采用Bouc-Wen模型可以较好地模拟该软钢阻尼墙的试验滞回曲线,该模型在减震结构设计中可用作此软钢阻尼墙的力学分析模型。  相似文献   

14.
One of the greatest impediments to using fibre reinforced polymer (FRP) composites in buildings and parking garages is their susceptibility to degradation when exposed to elevated temperatures and the limited knowledge on the thermal and mechanical properties of these composites at such temperatures. Glass FRP (GFRP) tensile coupons and single lap-splice coupons were tested in tension to study the mechanical properties under steady-state and transient thermal conditions. Tests were conducted at a range of temperatures between room temperature and +200°C. In terms of tensile strength, approximately half of the strength of the FRP was lost near the glass transition temperature of the epoxy resin matrix. However, 40% of the room temperature strength of the GFRP was still retained at 200°C. The lap-splice tests showed that the FRP-to-FRP bond strength was affected even more by high temperature exposure with 90% loss in lap-splice near the glass transition temperature. An analytical model is also presented in this paper characterizing the mechanical properties at elevated temperature, which in turn will be used in numerical fire endurance models developed by the authors.  相似文献   

15.
An experimental programme of eight elevated-temperature tests on composite steel top-and-seat-and-web (TSW) angle joints was carried out to investigate the behaviour of this form of joints under fire conditions. It is found that the inherent strength and stiffness of composite joints can significantly improve the structural behaviour of steel framed structures under fire conditions. However, experimental works on composite steel TSW angle joints under fire conditions have not been published yet. To develop a versatile model to predict the joint moment-rotation characteristics, the authors have developed a component-based mechanical model for this form of joints. The objectives of this study are to ascertain the moment-rotation characteristic for this form of joint at elevated temperatures and to validate the authors’ mechanical model. The effects of some parameters on the overall joint behaviour, such as elevated temperatures, longitudinal shear strength of RC slabs, steel beam depth and bolt behaviour were observed and investigated. The mechanical model predictions are compared with the test results and showed good agreement.  相似文献   

16.
17.
为研究预应力轴压撑杆钢柱的高温性能,进行了2根预应力撑杆钢柱高温试验。试验结果表明:拉索无防火措施时,其相对张力在初始升温阶段就迅速下降,直至完全松弛;预应力撑杆钢柱的轴向变形先由于热膨胀效应轴向伸长,而后在压力作用下轴向压缩;临界状态时,撑杆柱出现对称和反对称两种失稳形态。采用验证后的ANSYS有限元分析模型,考虑材料非线性、几何非线性和初始缺陷等,分析了荷载比、相对轴向刚度比和预应力比等3个关键参数对预应力撑杆柱高温性能的影响,得到了一系列拉索相对张力、侧向变形和轴向变形分别与时间的关系曲线。分析表明:预应力撑杆柱中拉索张力很快在高温下逐渐松弛,达到张力松弛所需时间主要受预应力比影响;预应力撑杆钢柱的侧向变形在升温初期缓慢增长,在失效前增长迅速;随着荷载比增大,预应力撑杆柱侧向变形和轴向变形越来越明显,且达到峰值所需时间不断缩短;预应力比对撑杆钢柱失效临界温度影响较小,但对预应力撑杆柱的破坏形态有较大影响。  相似文献   

18.
通过稳态拉伸试验法对国产超高强钢Q890在不同火灾高温条件下的力学性能进行了试验研究,得到高温下钢材的力学性能参数、应力-应变关系曲线和试验现象,并将所得试验结果与钢结构抗火设计规范及相关超高强钢研究文献中高温材料模型结果进行比较。分别采用多项式模型和钢材高温通用材料模型对试验结果进行数值拟合,建立高温下Q890钢力学性能参数的材料模型。结果表明:不同温度条件下的Q890钢试件在试验后有明显不同的外观特征,相应的应力-应变关系曲线基本形状差异较大;当受热温度低于500 ℃时,弹性模量和强度随温度升高逐步减小,断后伸长率变化不大;超过500 ℃后,弹性模量和强度下降速率明显加快,断后伸长率急剧增大;所建立的模型为研究Q890钢结构抗火性能及其计算方法提供理论基础。  相似文献   

19.
Steel connections play a crucial role in maintaining the integrity and stability of steel building frames especially when exposed to fire temperatures. The behavior of flush endplate connections in fire is shown to be governed by tension bolt failure as bolts lose their strength and stiffness more rapidly at higher temperatures. As a result, the ability to predict the development of stresses in tension bolts of flush endplate connections at different stages of fire is of special importance. One of the factors influencing bolt stresses in fire is the thermal creep or time-dependent inelastic response of steel to elevated temperatures. Therefore, time- and temperature-dependent behavior of tension bolts of flush endplate connections in fire is the focus of this study. Stress-time histories in tension bolts are obtained by explicit consideration of thermal creep of steel in FE models of flush endplate connections at elevated temperatures. To better understand the effect of thermal creep on tension bolt behavior, the correlation between time-dependent rotational deformation of flush endplate connections and bolt stresses is also investigated. Further, the isochronous representation is utilized to study the rotational deformation and the tension bolt stresses under various applied moments ranging from 50% to 95% of the moment capacity and fire temperatures ranging from 450°C to 600°C with 25°C increment. Through such representation, it is indicated that the connection behavior is not only dependent on bolt strength degradation and applied moment, but also affected by the time duration of applied moments and temperatures. Also, with the inclusion of thermal creep of steel, the connection experiences higher rotation and excessive endplate deformation with stress relaxation leading to top tension bolt failure at earlier stages of fire. More specifically, for time exposure greater than or equal to 60 min, the failure temperature of the connection decreases from 600°C to around 550°C. Therefore, neglecting thermal creep of structural steel may result in an unsafe prediction of the overall response of flush endplate connections in fire.  相似文献   

20.
In order to address the complex loading condition of steel joints in fire, and based on the experimental fire tests on steel frames with different joint typologies, performed at the University of Coimbra (Santiago et al. 2008), a detailed three-dimensional model was developed and calibrated to simulate the behaviour of welded and bolted end plate beam-to-column joints. The structural frame is modeled combining 3D shell, solid and joint elements, thereby taking into account the effect of the local failure modes, and the realistic behaviour of the frame exposed to a natural fire. The numerical model accounts for the initial geometrical imperfections, non-linear temperature gradient, geometrical and material nonlinearity and temperature dependent material properties. The results show the performance of each individual structural joint component under heating and cooling conditions and identify the main dependencies of the geometrical and mechanical variables of the components on the joint behaviour. The global behaviour of the frame and the joint failure modes are compared and discussed with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号