首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the small fatigue crack behavior of titanium alloy TC4 at different stress ratios was investigated. Single‐edge‐notch tension specimens were fatigued axially under a nominal maximum stress of 370 MPa at room temperature. Results indicate that fatigue cracks in TC4 initiate from the interface between α and β phases or within α phase. More than 90% of the total fatigue life is consumed in the small crack initiation and growth stages. The crack growth process of TC4 can be divided into three typical stages, ie, microstructurally small crack stage, physically small crack stage, and long crack stage. Although the stress ratio has a significant effect on the total fatigue life and crack initiation life at constant σmax, its effect on crack growth rate is indistinguishable at R = ?0.1, 0.1, and 0.3 when crack growth rate is plotted as a function of ?K.  相似文献   

2.
Abstract

As rolled TC21 titanium alloy was subjected to isothermal constant strain rate tensile tests using an electronic tensile testing machine. After tensile deformation, the alloys were subjected to double annealing. Superplastic behaviour and microstructure evolution were systematically investigated. Experimental results show that as rolled TC21 alloy exhibits good superplasticity at temperatures ranging from 870 to 930°C and strain rates ranging from 3×10?4 to 3×10?2 s?1. A maximum elongation of 373·3% was obtained at 910°C and 3×10?4 s?1. In addition, the alloy microstructure comprises α and β phases during plastic deformation. The primary α-grains aggregate and merge to form new crystal grains with irregular grain boundaries because of dynamic recrystallisation. Furthermore, the primary α phase content gradually decreases with increasing temperature. The resulting microstructure after deformation and double annealing is a duplex microstructure comprising a primary equiaxed α phase and a β-transformed lamellar structure. The acicular α phase transformed from the β phase is mutually interlaced as a basketweave structure after deformation at 930°C and double annealing.  相似文献   

3.
Deformation behavior in isothermal compression of the TC11 titanium alloy   总被引:1,自引:0,他引:1  
Isothermal compression of the TC11 titanium alloy has been conducted on Gleebe-1500 hot-simulator at the deformation temperatures ranging from 1023 K to 1323 K, the strain rates ranging from 0.001 s−1 to 10.0 s−1, and the height reductions ranging from 50% to 70%. The effect of deformation temperature, strain rate and strain on the flow stress and the apparent activation energy for deformation is in depth analyzed. The experimental results show that the apparent activation energy for deformation in isothermal compression of the TC11 titanium alloy decreases with the increasing of strain. Moreover, the apparent activation energy for deformation in α + β two-phase region of the TC11 titanium alloy increases with the increasing of deformation temperature and decreases with the increasing of strain rate. A power dissipation efficiency map in isothermal compression of the TC11 titanium alloy is constructed at a strain of 0.6, in which three domains with higher power dissipation efficiency are observed, and deformation characteristics of the above-mentioned domains are analyzed. Finally, optical micrographs of the TC11 titanium alloy obtained on a Leica DMLP microscope showed the evidence of deformation in three domains.  相似文献   

4.
微观组织对贝氏体钢疲劳裂纹扩展行为的影响   总被引:1,自引:0,他引:1  
为了研究组织对疲劳裂纹扩展行为的影响,对3种不同贝氏体组织钢进行了疲劳裂纹扩展实验,并采用SEM和EBSD等方法对裂纹进行了分析.结果表明,板条贝氏体组织在近门槛区和稳定扩展区阻碍裂纹扩展的能力最强,具有最小的裂纹扩展速率.板条贝氏体组织中的大角度晶界使裂纹更容易发生偏折,导致断口表面粗糙度增加,裂纹扩展受到较强的粗糙度诱导裂纹闭合效应的作用.随着ΔK的增大,塑性诱导裂纹闭合效应取代粗糙度诱导裂纹闭合效应开始占据主导作用,是板条贝氏体组织中裂纹扩展速率对ΔK的变化较敏感的原因.  相似文献   

5.
The aim of this paper is to assess the very-high-cycle fatigue (VHCF) behaviour of a magnesium alloy (ZK60). Results indicate that the fatigue crack initiates from an area consisting of many distributed facets, while the region of early crack propagation is characterised by parallel traces, based on a fractographic analysis. The significant differences in morphology around the crack initiation area result from the interaction between the deformation twinning and the plastic zone at the crack tip. In addition, the fatigue crack propagation rate around the crack initiation site is also estimated based on a modified Murakami model. It is found that the formation stage for the fatigue crack is of great importance to the fatigue failure mechanism in the VHCF regime.  相似文献   

6.
在Na2SiO3-Na2WO4-NaOH混合电解液中,利用微孤氧化(MAO)技术在TC11合金表面制备了氧化膜.用扫描电镜(SEM),X射线能谱仪(EDS),X射线衍射仪(XRD)对氧化膜微观结构、化学成分、厚度以及相组成进行了分析,采用HVS-1000维氏显微硬度计、MFT-4000划痕试验机、电化学测量系统完成氧化...  相似文献   

7.
采用激光增材制造技术制备12CrNi2合金钢核电应急柴油机凸轮轴可以明显降低产品研发周期,优化产品结构.本研究采用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和电子万能试验机对激光增材制造12CrNi2合金钢热处理前后的组织和力学性能进行了研究.微观组织观察发现,试样存在带状特征和柱状晶形貌,圆弧带间为致密的冶金结合,顶部由于无后一道的重熔热作用,柱状晶形貌十分显著.沉积态组织主要由铁素体组成,试样不同部位的铁素体形貌存在一定的差异.经退火处理后,铁素体边界出现大量白色粒状析出物,延伸率显著提高,达到22.9%.经淬火及不同温度回火处理后,带状特征和柱状晶形貌消除,得到马氏体及其回火组织,抗拉强度达到1 000 MPa.与沉积态抗拉强度831 MPa相比,热处理态试样的抗拉强度显著提高.经固溶时效处理后,晶粒明显粗化.  相似文献   

8.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   

9.
The effect of Cu–Mg cluster size and number density on the fatigue fracture behavior of Al–Cu–Mg alloy with various aging conditions was investigated by means of transmission electron microscopy (TEM), atom probe tomography (APT), scanning electron microscopy (SEM) and fatigue testing. Results showed that the fatigue crack propagation (FCP) resistances of 170 °C/1 h and 170 °C/8 h samples were higher than that of 170 °C/0.5 h sample due to increased number density of great size Cu–Mg co-clusters (>50 atoms). These large clusters were harder to dissolve during cycle deformation, thus reduced the cyclic softening effect and enhanced the FCP resistance. Moreover, as aging prolonged, the critical shear stress (τm) of co-clusters by modulus hardening increased from 10.2 (MPa) in 170 °C/0.5 h sample to 12.4 in 170 °C/1 h sample and 12.1 in 170 °C/8 h sample. Thus the force required for the movement of dislocations impeded by co-clusters, as well as the resistance of FCP caused by co-clusters, in 170 °C/1 h and 170 °C/8 h sample was higher than that in 170 °C/0.5 h sample. The 170 °C/8 h sample possessed the lower FCP resistance than 170 °C/1 h sample because of the existence of S′ phase. S′ phase was a kind of semi-coherent unshearable precipitate and hence reduced the planar-reversible slip.  相似文献   

10.
The implementation of unitized structure in the aerospace industry has resulted in complex geometries and load paths. Hence, structural failure due to three-dimensional mixed-mode fatigue crack growth is a mounting concern. In addition, the development of functionally graded materials has further complicated structural integrity issues by intentionally introducing material variability to create desirable mechanical behavior. Ti-6Al-4V β-STOA (solution treated over-aged) titanium is a functionally graded metallic alloy that has been tailored for superior fatigue crack growth and fracture response compared with traditional titanium alloys. Specifically, the near-surface material of Ti β-STOA is resistant to fatigue crack incubation and the interior is more resistant to fatigue crack growth and fracture. Therefore, Ti β-STOA is well suited for applications where surface cracking is a known failure mode. Advances in experimental testing have shown that complex loading conditions and multi-faceted materials can be tested reliably. In this paper, the authors will experimentally generate three-dimensional mixed-mode surface crack data in functionally graded Ti-6Al-4V β-STOA and comment on the effect of the material tailoring.  相似文献   

11.
为寻求优化钛合金组织和力学性能的新思路,本文采用电冲击处理方法对TC11钛合金进行组织结构调控,并利用SEM和EBSD对处理前后材料的微结构、相含量和织构分布进行表征分析,同时利用处理前后的硬度分布和压缩性能分析来体现力学性能变化。微结构研究表明,当电冲击处理时间增加至0.04 s,材料发生针状二次α向β相转变,β相含量从10.1%增加到14.4%,且初生α/β相界面平滑度增加,主要归因于电冲击处理过程的热效应和非热效应。织构研究表明,电冲击处理0.04 s后,α相织构强度从6.77增大到10.53,β相织构强度增加不明显,α相和β相织构变化与电冲击处理能量集中引起的相变有关。力学性能研究结果显示,电冲击处理0.06 s后,显微硬度和屈服强度明显提高,主要原因是样品内部析出大量细小的针状马氏体α相,起到弥散强化作用。综上,利用电冲击处理来调控钛合金微结构将是一种新的探索,可为钛合金力学性能改善提供一条新途径。  相似文献   

12.
金属增材制造技术可用于大型、复杂高性能钛合金结构件的制备,在航空航天等领域具有显著的优势和巨大的发展潜力。虽然增材制造Ti-6Al-4V合金构件的强度已经能够超过锻件,但它仍存在内部孔隙、熔合不良、粗大的柱状晶及残余拉应力等问题,使其在疲劳性能上与锻件具有一定的差距。本文在介绍直接能量沉积、选区激光熔化和电子束选区熔化3种代表性增材制造技术的原理及特点的基础上,简述了3种工艺制备Ti-6Al-4V合金构件的微观组织、静态力学性能及低周疲劳性能的研究进展,重点讨论了打印方向、缺陷、显微组织和表面处理对低周疲劳性能的影响。分析了增材制造Ti-6Al-4V合金构件低周疲劳性能、拉伸性能与微观组织之间的内在关系,并对提高构件低周疲劳性能的方法和推动其广泛应用的发展方向进行展望。  相似文献   

13.
目的 揭示应力比对增材制造TC4钛合金疲劳裂纹扩展行为的影响规律。方法 采用紧凑型拉伸试样,在恒载荷幅条件下对激光增材制造TC4钛合金进行了应力比为0.1、0.3和0.5的疲劳裂纹扩展实验,定量评价了不同应力比下合金的疲劳裂纹扩展速率和变化规律。基于Paris公式对裂纹扩展速率进行了拟合,分析了应力比对各参数的影响规律。最后通过扫描电镜对断口表面形貌进行了观察,分析了应力比对断裂模型的影响。结果 在相同的?K条件下,疲劳裂纹扩展速率随着应力比的增大而增大。在Paris公式中,参数C随应力比的增大而减小,参数m随应力比的增大而增大,并且m和lg C呈现线性关系。随应力比的增大,断口表面的河流花样增多、疲劳辉纹变浅、二次裂纹数量增加。结论 应力比引起的裂纹尖端闭合效应和平面应力比变化是导致裂纹扩展速率发生改变的主要原因。  相似文献   

14.
Fatigue crack growth behaviours of the titanium alloy Ti‐6Al‐4V, with two different microstructures, at different maximum stresses were identified by digital image correlation technique. Full‐field strains were monitored around fatigue cracks after consecutive cycles in fatigue crack growth experiments. Results indicated that the Ti‐6Al‐4V alloy with a bi‐modal microstructure had a better fatigue resistance than that with a primary‐α microstructure. Typical behaviours of small cracks and the evolution of multi‐scale fatigue cracks were clarified. The strain accumulations around the micro‐notch and fatigue crack increased with increasing number of load cycles. On the basis of von Mises strain mapping, it was found that crack growth rate could be characterized by crack‐tip plastic zone size.  相似文献   

15.
The aim of this paper was to identify the effect of laser shock peening (LSP) on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy. The laser shocked specimen in which residual compressive stress is mechanically produced into the surface showed a very high dislocation density within the grains. This was evident throughout the LSP region. The spacing among the fatigue striations in the LSP region was narrow, which indicated that LSP had an obvious inhibitory action to fatigue crack initiation and growth. In contrast, the region without LSP exhibited an extremely low dislocation density. And LSP improved 7050-T7451 alloy specimens’ fatigue intensity.  相似文献   

16.
以TC4球形粉末为原料,采用激光沉积制造技术制备TC4钛合金厚壁件。通过光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)等方法研究了退火处理对激光沉积制造TC4显微组织及力学性能的影响。结果表明:试样经α+β两相区退火处理后,显微组织为网篮组织,经β单相区退火后,组织转变为魏氏组织;退火试样力学性能仍存在各向异性:Z向试样强度较低,塑性较好,而XY向试样强度高,塑性较差,退火温度对试样的各向异性具有明显影响;XY向试样拉伸性能存在较明显的分散性;α+β两相区退火处理后两个方向上均为韧性断裂,β单相区退火处理后试样强度与塑性大幅下降,且XY向试样为脆性断裂。  相似文献   

17.
通过在Gleeble-1500D型热模拟试验机上进行的等温恒应变速率压缩试验和金相及透射分析,研究了变形温度和应变速率对TC21钛合金热变形后微观组织的影响.结果表明:变形温度和应变速率对TC21钛合金的变形组织有着显著的影响.在两相区,随着变形温度的升高,组织中初生α相含量减少,β相含量增加;在应变速率为0.01 s-1、变形温度为860和890 ℃时,初生α相发生了再结晶.随着应变速率的增加,马氏体条变窄,当应变速率较低时(0.01 s-1),组织中观察了再结晶晶粒.  相似文献   

18.
The effect of hold-time on fatigue crack growth behaviors of WASPALOY alloy was investigated. It was found that the role of hold-time depends on the competition between the harmful environmental effect and the beneficial effect of creep. If temperature is not higher than 705 °C, fatigue crack growth rate of WASPALOY alloy increases with hold-time. On the contrary, hold-time plays a beneficial role on steady state fatigue crack growth of WASPALOY alloy at 760 °C and lower stress intensity factor. The beneficial effect of hold-time was attributed to the creep caused stress relaxation during the hold-time. However, accumulated creep damages cause to cavity nucleation and growth at the grain boundaries, and then accelerate fatigue crack growth. Hold-time plays a harmful role during the final stage of fatigue crack growth.  相似文献   

19.
Laser shock peening was carried out to reveal the effects on ASTM: 410L 00Cr12 microstructures and fatigue resistance in the temperature range 25–600 °C. The new conception of pinning effect was proposed to explain the improvements at the high temperature. Residual stress was measured by X-ray diffraction with sin2ψ method, a high temperature extensometer was utilized to measure the strain and control the strain signal. The grain and precipitated phase evolutionary process were observed by scanning electron microscopy. These results show that a deep layer of compressive residual stress is developed by laser shock peening, and ultimately the isothermal stress-controlled fatigue behavior is enhanced significantly. The formation of high density dislocation structure and the pinning effect at the high temperature, which induces a stronger surface, lower residual stress relaxation and more stable dislocation arrangement. The results have profound guiding significance for fatigue strengthening mechanism of components at the elevated temperature.  相似文献   

20.
This investigation was performed to compare the simulation and experimental results of the fatigue crack growth rates and behaviors of the 7050-T7451 aluminum alloy by nanoseconds laser shock processing (LSP). Forman–Newman–deKoning (FNK) model embedded in the Franc2D/L software was utilized to predict fatigue crack growth rate, which was conducted to weigh the stress intensity factor (SIF) changing on the surface cracks. LSP induced high compressive residual stresses that served to enhance fatigue properties by improving the resistance against fatigue crack initiation and propagation. The circulating times of crack growth obtained from the simulation and experimental values indicated a slower fatigue crack growth rates after LSP. The relationships between the elastic–plastic materials crack growth rates and the SIF changing after LSP are resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号