首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of a 2 1 4 Cr-1Mo steel in dry flowing oxygen has been studied in the temperature range 550–700°C for periods of up to 100 hr. A detailed low-resolution microstructural investigation revealed a layered oxide consisting of a very fine-grained and finely pored innermost layer of doped spinel, a central columnar-grained relatively coarsely pored layer of magnetite, and an outer fine-grained hematite layer with fine pores and covered with whiskers of -Fe2O3. This structure is compared with previous results on Fe and model Fe-Cr alloys, as are the kinetics of the oxidation reaction.  相似文献   

2.
Two-phase layered scales comprising CoO and Co 3O4 formed on cobalt during oxidation at 600°, 700°, and 800°C and at oxygen partial pressures in the range 0.001–1 atm. The kinetics, which were obtained by thermogravimetric analysis, obeyed a parabolic rate law after an initial, non-parabolic stage of oxidation. The monoxide consisted of relatively large grains (10 ) and the spinel comprised small grains (3 ) for all conditions of oxidation. Grain boundary diffusion of cations played a significant role in the growth of the spinel layer. Thermogravimetric data and the steady-state ratio of the oxide layer thicknesses were employed to calculate the rates of thickening of the individual oxide layers and the rate of oxidation of CoO to Co3O4.  相似文献   

3.
Oxidation kinetics of a parent Fe-5Cr-4Al alloy subjected to two types of anneals were investigated at temperatures ranging from 1000°C to 1320°C. The alloy annealed at 850°C exhibited a rapid transient oxidation stage associated with growth of nodules containing iron oxides and internal precipitation of -Al2O3 in the alloy beneath these nodules. The nodules nucleated and grew from sites located in the regions of the alloy grain boundaries during the period of rapid alloy grain growth. Nodular growth virtually ceased when a continuous -Al2O3 film formed at the nodule-alloy interface. The alloy subjected to anneal at 1000°C and at the reaction temperature to stabilize the alloy grain size tended upon oxidation to form a protective -Al2O3, layer by parabolic kinetics at temperatures to 1250°C. If this alloy was oxidized in stages at 1000°C, a protective -Al2O3 scale was formed up to 1320°C. The temperature coefficient of the parabolic oxidation kinetics was consistent with diffusion processes at boundaries of the -Al2O3 grains playing an essential role during growth of this protective oxide layer.  相似文献   

4.
DZ40M alloy is a new Co-base superalloy, which is suitable for the blade material of gas turbines. In this paper, isothermal oxidation of an aluminide coating on this alloy was examined at 900–1100°C in air. It was observed that the weight gain at lower temperatures (900 and 1000°C) was greater than that at the higher temperature (1050°C), which was due to the formation of both -Al2O3 and -Al2O3 at 900 and 1000°C but only -Al2O3 at 1050 and 1100°C.  相似文献   

5.
Isothermal oxidation tests at 1000°C in air indicate that the Ti--50Al alloy with about 8 m TiAl3 layer on the surface can resist the oxidation for 10 hr. From the FESEM and EPMA/EDS results, the rapid oxidation behavior is attributed to the formation of oxide nodules through the protective Al2O3 and TiAl2 layers on the outer surface. Upon increasing the oxidation time at 1000°C, the size and the number of oxide nodules increase. After 3 hr of oxidation at 1000°C, a laminated layer is formed in between the oxide nodule and substrate, which consists of two nearly parallel phases. The EDS results suggest that these two phases are Ti--Al--O compounds. After 20 hr oxidation, the oxidation nodules and laminated layers disappear and a complex oxide scale is formed which is similar to the bare Ti--50Al oxidized at 1000°C.  相似文献   

6.
Nickel spinel, Ni1–xAl2(1+x/3)O4, is the only intermediate compound in the quasibinary NiO--Al2O3 system at temperatures between 1000 and 1920°C. The spinel equilibrated with NiO occurs at its stoichiometric composition, NiAl2O4, independent of temperature. An alumina rich spinel, 0.17 x 0.62, equilibrated with -Al2O3 increases in alumina content with increasing temperature. Aluminum oxide solubility in NiO increases from 1 mole % at 1000°Cto 3 mol % at 1800°C. Nickel oxide solubility in -Al2O3 was found to increase from 2 mole % at 1000°C to 3 mole % at 1920°C.  相似文献   

7.
The high-temperature oxidation behaviour of pure Ni3Al alloys in air was studied above 1000°C. In isothermal oxidation tests between 1000 and 1200°C, Ni3Al showed parabolic oxidation behavior and displayed excellent oxidation resistance. In cyclic oxidation tests between 1000 and 1300°C, Ni3Al exhibited excellent oxidation resistance between 1000 and 1200°C, but drastic spalling of oxide scales was observed at 1300°C. When Ni3Al was oxidized at 1000°C, Al2O3 was present as -Al2O3 in a whisker form. But, at 1100°C the gradual transformation of initially formed metastable -Al2O3 to stable -Al2O3 was observed after oxidation for about 20 hr. After oxidation at 1200°C for long times, the formation of a thick columnar-grain layer of -Al2O3 was observed beneath a thin and fine-grain outer layer of -Al3O3. The oxidation mechanism of pure Ni3Al is described.  相似文献   

8.
The oxidation behavior of Ni3Al+2.90 wt.% Cr, Ni3Al+3.35 wt% Co, and Ni3Al+2.99 wt.% Ti alloys was studied in 1 atm of air at 1000, 1100, and 1200°C. Isothermal tests revealed parabolic kinetics for all three alloys at all temperatures. Cyclic oxidation for 28 two-hour cycles produced little spallation at 1000°C, but caused partial spallation at 1100°C. Especially, at 1200°C severe spallation in all three alloys was observed. Although additions of Cr, Co, or Ti to Ni3Al alloys slightly increased the isothermal-oxidation resistance, the additions tended to decrease the cyclic-oxidation resistance. The major difference in the oxidation of the three alloys compared with the oxidation of pure Ni3Al alloys was the existence of small -Al2O3 particles in the middle of the -Al2O3 scale and the formation of irregularly shaped Kirkendall voids at the alloy-scale interface.  相似文献   

9.
The development, growth, and adhesion of -Al2O3 scales on platinum-aluminum alloys containing between 0.5 and 6 wt.% aluminum have been studied at temperatures in the interval between 1000 and 1450° C. The morphologies and microstructures of the -Al2O3 scales were found to be influenced by the temperature, oxygen pressure, and the microstructures of the alloys. The oxidation rates of the alloys appeared to be controlled by transport of oxygen along grain boundaries in the -Al2O3 scales. The -Al2O3 scales adhered to the platinum-aluminum substrates even after extensive periods of cyclic oxidation. The good adhesion of the -Al2O3 may result from mechanical keying of the oxide to the alloys due to the development of irregular oxide-alloy interfaces.This work was supported by the U.S. Army Research Office, Durham, under Contract Number DAHCO 4 73 C 0021.  相似文献   

10.
The oxidation behavior of Ni-Cr alloys with various chromium concentrations and particle sizes of a dispersion of 10 vol.% Al2O3 was observed in 1 atm of oxygen at 1000°C. This study was intended to determine the critical chromium concentration to form a protective Cr2O3 oxide layer for different Al2O3 particle sizes. The oxidation rate of Ni-Cr alloys containing 10 vol.% Al2O3 followed a parabolic rate law and a Cr2O3 protective layer continuously formed when the oxidation rate decreased rapidly. Times to form a continuous and protective Cr2O3 layer during the initial oxidation shortened as the size of the dispersion decreased. The critical chromium concentration to form a protective Cr2O3 layer in the oxide scale was 69 wt.% and was related strongly to the particle size of the Al2O3 dispersion.  相似文献   

11.
The oxidation kinetics of Rh were measured in air at 1 atm. in the temperature range 600–1000°C. The oxidation weight gain proceeds logarithmically at the lower temperatures (600°C, 650°C) followed by a transition to power law behavior at the higher temperatures (800°C). The logarithmic growth kinetics result from thickening of a hexagonal Rh2O3 scale. The transition from logarithmic to power law growth kinetics occurs in the range 700–800°C, and reflects thickening of hexagonal and orthorhombic Rh2O3 scales. Above 800°C, the growth kinetics result from thickening of a predominately orthorhombic Rh2O3 scale. At 1000°C the oxide becomes volatile, leaving the metal surface exposed.  相似文献   

12.
The oxidation behavior of two MoSi2 variants, one Mo-rich and one Si-rich, and TiSi2 was investigated between 1000 and 1400°C in air, oxygen and an 80/20-Ar/O2 mixture. A protective SiO2 scale develops on MoSi2 in all atmospheres in the temperature range investigated. The SiO2 modification changes around 1300°C from tridymite to cristobalite. This change in SiO2 modification seems to cause an enhanced formation of SiO2 and evaporation of MoO3. The SiO2 grows at the MoSi2-scale interface. In air a two-layer scale grows on TiSi2 between about 1000 and 1200°C with an inner inwards growing fine-grain mixture of SiO2 + TiO2 and an outer outward-growing TiO2 partial layer. TiN formation in the transient oxidation is responsible for the formation of the inner mixed partial layer because in N -free atmospheres a scale of a SiO2 matrix with some Ti oxide precipitates inside is formed. A one-layer scale structure similar as that in N-free atmosphere is found on TiSi2 in air at T > 1200°C. In oxygen the TiO2 precipitates grow as needles mostly oriented perpendicular to the surface. Due to the faster oxygen transport in TiO2 compared with SiO2, these TiO2 needles act as oxygen pipes, causing an enhanced oxidation of TiSi2 in front of these needles. The SiO2 scale dissolves about 1–2% TiO2. This doping causes a mixed oxygenand Si transport with the consequence that the SiO2 scale on TiSi2 grows partly by oxygen transport inwards and Si transport outwards. The SiO2 modification is cristobalite over the entire temperature range investigated.  相似文献   

13.
Calvarin  G.  Molins  R.  Huntz  A. M. 《Oxidation of Metals》2000,53(1-2):25-48
The oxidation behavior of Ni—20Cr foils of 100- and 200-m thickness wasstudied in air between 500 and 900°C. Simultaneously, the morphology,microstructure, and composition of the oxide layers were determined byscanning and transmission electron microscopies. Depending on thetemperature, the oxide layer differed significantly. The scale formedat all temperatures was complex, with an outer NiO layer having columnargrains, and an inner layer of equiaxedNiCr2O4+NiO+Cr2O3 grains. At low temperatures (500 and 600°C),the chromium content was insufficient to form a continuousCr2O3 layer, while such a continuous layer formed at theinner interface at oxidation temperatures of 700 to 900°C. At 600°C,internal oxidation of chromium occurred in the substrate. The oxidationmechanism is described taking into account these morphologies and theoxidation kinetics. The observation of no significant differences betweenthe oxidation behavior of thin strips and thick materials is related to thelimited exposure times of the study.  相似文献   

14.
On the transient oxidation of a Ni-15Cr-6Al alloy   总被引:2,自引:0,他引:2  
Stages in the development of a protective -Al2O3 scale on a Ni-15Cr-6Al (wt.%) alloy have been examined. It is shown that prior to the formation of a continuous -Al2O3 layer, a transient stage of oxidation occurs that consists of a rapid uptake of oxygen with conversion of a thin surface layer of alloy to predominantly spinel and the subsequent development of a discrete layer of Cr2O3. It is also shown that during the transient period of oxidation metastable phases of aluminum oxide are formed which transform to -Al2O3 upon incorporation into the external oxide scale.  相似文献   

15.
The high-temperature oxidation behavior of vanadium-aluminum alloys   总被引:1,自引:0,他引:1  
The oxidation behavior in air of pure vanadium, V-30Al, V-30Al-10Cr, and V-30Al-10Ti (weight percent) was investigated over the temperature range of 700–1000° C. The oxidation of pure vanadium was characterized by linear kinetics due to the formation of liquid V2O5 which dripped from the sample. The oxidation behavior of the alloys was characterized by linear and parabolic kinetics which combined to give an overall time dependence of 0.6–0.8. An empirical relationship of the form: W/A=Bt + Ct1/2 + D was found to fit the data well, with the linear contribution suspected to be from V2O5 formation for V-30Al and V-30Al-10Cr, and a semi-liquid mixture of V2O5 and Al2O3 for V-30Al-10Ti. The parabolic term is presumed related to the formation of a solid mixture of V2O5 and Al2O3 for V-30Al and V-30Al-10Cr, and TiO2 for V-30Al-10TiThe addition of aluminum was found to reduce the oxidation rate of vanadium, but not to the extent predicted by the theory of competing oxide phases proposed by Wang, Gleeson, and Douglass. This was attributed to the formation of a liquid-oxide phase in the initial stages of exposure from which the alloys could not recover. Ternary additions of chromium and titanium were found to decrease the oxidation rate further, with chromium being the most effective. The oxide scales of the alloys were found to be highly porous at 900° C and 1000° C, due to the high vapor pressure of V2O5 above 800° C.  相似文献   

16.
Hidaka  Y.  Anraku  T.  Otsuka  N. 《Oxidation of Metals》2002,58(5-6):469-485
Tensile tests of virtually pure FeO, -Fe3O4, and -Fe2O3 were performed at 600–1250°C at strain rates of 2.0×10–3–6.7×10–5 s–1 under controlled gas atmospheres. Mechanical properties and deformation/fracture behavior were investigated. For -Fe2O3, brittle fracture resulted at 1150–1250°C and the fracture strain was below 4.0% at a strain rate of 2.0×10–4 s–1. -Fe3O4 deformed plastically above 800°C. Steady-state deformation was indicated at 1200°C; elongation of 110% was obtained. Plastic deformation observed at 800 to 1100°C was considered to result from dislocation glide. Using TEM, the Burgers vector of dislocations observed in deformed -Fe3O4 was determined to be <110>, its slip system was estimated to be {111}<110>. FeO deformed plastically above 700°C. Steady-state deformation became predominant above 1000°C. Elongation of 160% was obtained at 1200°C. Strain rates of FeO at 1000°C and 1200°C were proportional to the fourth power of the saturated stress, indicating that plastic deformation was affected by dislocation climb.  相似文献   

17.
Hidaka  Y.  Anraku  T.  Otsuka  N. 《Oxidation of Metals》2003,59(1-2):97-113
Tensile tests of virtually pure FeO, -Fe3O4, and -Fe2O3 were performed at 600–1250°C at strain rates of 2.0×10–3–6.7×10–5 s–1 under controlled gas atmospheres. Mechanical properties and deformation/fracture behavior were investigated. For -Fe2O3, brittle fracture resulted at 1150–1250°C, and the fracture strain was below 4.0% at a strain rate of 2.0×10–4 s–1. Oxide of -Fe3O4 deformed plastically above 800°C. Steady-state deformation was indicated at 1200°C; elongation of 110% was obtained. Plastic deformation observed at 800–1100°C was considered to result from dislocation glide. Using TEM, burgers vector of dislocation observed in deformed -Fe3O4 was determined to be 110, and its slip system was estimated to be {111}<110>. Oxide of FeO deformed plastically above 700°C. Steady-state deformation became predominant above 1000°C. Elongation of 160% was obtained at 1200°C. Strain rates of FeO at 1000 and 1200°C were proportional to the fourth power of the saturated stress, indicating that the plastic deformation was affected by dislocation climb.  相似文献   

18.
Isothermal oxidation of NiAl + Zr has been performed over the temperature range of 800–1200°C and studied by TGA, XRD, and SEM. A discontinuous decrease in growth rate of two orders of magnitude was observed at 1000° C due to the formation of -Al2O3 from -Al2O3. This transformation also resulted in a dramatic change in the surface morphology of the scales, as a whisker topography was changed into a weblike network of oxide ridges and radial transformation cracks. It is believed that the ridges are evidence for a shortcircuit outward aluminum diffusion growth mechanism that has been documented in a number of18O tracer studies.  相似文献   

19.
Li  M.H.  Sun  X.F.  Li  J.G.  Zhang  Z.Y.  Jin  T.  Guan  H.R.  Hu  Z.Q. 《Oxidation of Metals》2003,59(5-6):591-605
The oxidation behavior of a Single-crystal Ni-base superalloy was studied using discontinuous thermogravimetric analysis (TGA) and prolonged exposure in air at 800 and 900°C. The mass gain of specimens at 900°C was found to be lower than that of specimens at 800°C because of the formation of a protective inner -Al2O3 layer at 900°C. A subparabolic time dependence (n=0.16 at 800°C and n=0.10 at 900°C) of the oxide growth rate was determined at both temperatures. At 800°C, the superalloy exhibited nonuniform oxidation—in some areas a thin scale with an outer NiO layer and an inner layer of an Al-rich oxide was found and, in other areas, complex oxides [CrTaO4, NiCr2O4, (Ni,Co)Al2O4, etc.] below the NiO outer layer formed by growing into the superalloy. The scale formed at 900°C is more uniform than that formed at 800°C, consisting of several layers: an NiO outer layer, spinel-rich sublayer, a CrTaO4-rich layer, and an -Al2O3 inner layer. The -Al2O3 inner layer provides good oxidation protection and the specimen mass gain is low for test up to 1925 hr.  相似文献   

20.
Wang  X.H.  Zhou  Y.C. 《Oxidation of Metals》2003,59(3-4):303-320
The isothermal oxidation behavior of bulk Ti2AlC in air has been investigated in temperature range 1000–1300°C for exposure time up to 20 hr by TGA, XRD, and SEM/EDS. The results demonstrated that Ti2AlC had excellent oxidation resistance. The oxidation of Ti2AlC obeyed a cubic law with cubic rate constants, kc, increasing from 2.38×10-12 to 2.13×10-10 kg3/m6/sec as the temperature increased from 1000 to 1300°C. As revealed by X-ray diffraction (XRD) and SEM/EDS results, scales consisting of a continuous inner -Al2O3 layer and a discontinuous outer TiO2 (rutile) layer formed on the Ti2AlC substrate. A possible mechanism for the selective oxidation of Al to form protective alumina is proposed in comparison with the oxidation of Ti–Al alloys. In addition, the scales had good adhesion to the Ti2AlC substrate during thermal cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号