共查询到19条相似文献,搜索用时 62 毫秒
1.
基于粒子群算法求解多目标优化问题 总被引:58,自引:0,他引:58
粒子群优化算法自提出以来,由于其容易理解、易于实现,所以发展很快,在很多领域得到了应用.通过对粒子群算法全局极值和个体极值选取方式的改进,提出了一种用于求解多目标优化问题的算法,实现了对多目标优化问题的非劣最优解集的搜索,实验结果证明了算法的有效性. 相似文献
2.
3.
为了让多目标粒子群优化算法在运行过程中保持粒子的多样性,提出了一种初始化方法和动态多粒子群协作的多目标优化算法。根据粒子群在决策空间中的分布情况动态增加或者减少粒子群数量;为避免粒子收敛速度过快,改进了决定粒子飞行速度的因素,速度值依赖于粒子当前速度惯性、粒子最优值,群最优值和所有群最优值。用五个测试函数对算法进行了测试并与多目标粒子群优化进行了比较,测试结果表明提出的算法优于多目标粒子群优化算法。 相似文献
4.
解多目标优化问题的新粒子群优化算法 总被引:3,自引:0,他引:3
刘淳安 《计算机工程与应用》2006,42(2):30-32,72
通过定义的粒子序值方差和U-度量方差,把对任意多个目标函数的优化问题转化成为两个目标函数的优化问题。继而把Pareto最优与粒子群优化(PSO)算法相结合,对转化后的优化问题提出了一种新的多目标粒子群优化算法,并证明了其收敛性。新方法用较少计算量便可以求出一组在最优解集合中分布均匀且数量充足的最优解。计算机仿真表明该算法对不同的试验函数均可用较少计算量求出在最优解集合中分布均匀且数量充足的最优解。 相似文献
5.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
6.
将粒子群算法与局部优化方法相结合,提出了一种混合粒子群多目标优化算法(HMOPSO)。该算法针对粒子群局部优化性能较差的缺点,引入多目标线搜索与粒子群算法相结合的策略,以增强粒子群算法的局部搜索能力。HMOPSO首先运行PSO算法,得到近似的Pareto最优解;然后启动多目标线搜索,发挥传统数值优化算法的优势,对其进行进一步的优化。数值实验表明,HMOPSO具有良好的全局优化性能和较强的局部搜索能力,同时HMOPSO所得的非劣解集在分散性、错误率和逼近程度等量化指标上优于MOPSO。 相似文献
7.
根据粒子群算法求解多目标问题的特点,个体极值和全局极值的选择不同会对实验结果产生很大影响。目前普遍的选择方法仅仅根据简单的支配关系,但是会存在两个解之间没有支配关系而导致不去更新个体最优值(PB)和全局最优值(GB),这样会导致更好的个体极值和全局极值的遗漏从而降低收敛时间。文中提出一种新的个体极值和全局极值的选择策略。使用这种策略,可以加快收敛,提高准确性,防止非劣解的遗漏。通过几个测试函数的实验仿真,所得解集的分步性和多样性都有显著的提高。 相似文献
8.
庹军民 《计算机应用与软件》2010,27(6):230-232,262
定义了Pareto最优解及与其相关的一些概念,引入了被广泛应用的改进的单目标PSO(Particle Swarm Optimization)算法.在此基础上提出了MOPSO算法,用改进的Pareto最优解概念排挤不满足约束的解,还采取一种新的寻找全局最优粒子策略.为了方便评估算法的性能,提出三个比较规则:AD、SP和ER.求解三个复杂的测试问题的结果显示,MOPSO能求出数量充足的、分布均匀的Pareto最优解. 相似文献
9.
针对逼近理想解的排序方法对Pareto前端的距离跟踪以及灰色关联度能够很好地分析非劣解集曲线与Pareto最优解集曲线的相似性,提出了一种求解多目标优化问题的理想灰色粒子群算法。该算法利用理想解理论与灰色关联度理论来求解粒子与理想解之间的相对适应度和灰色关联度系数,把两者的和定义为相对理想度,通过相对理想度来判别粒子的优劣,以确定个体极值和全局极值。通过四组不同类型的基准函数测试算法性能,并与目标加权法和灰色粒子群算法比较分析,结果表明该算法能够较好地收敛到Pareto最优解集,不但具有较好的收敛性和分布 相似文献
10.
基于混沌的多目标粒子群优化算法 总被引:1,自引:0,他引:1
针对多目标优化问题,提出了一种改进的粒子群算法.该算法为了寻找新解,引入了混沌搜索技术,同时采用了一种新的方法--拥挤距离法定义解的适应度.并采取了精英保留策略,在提高非劣解集多样性的同时,使解集更加趋近于Pareto集.最后,把算法应用到4个典型的多目标测试函数.数值结果表明,该算法能够有效的收敛到Pareto非劣最优目标域,并沿着Pareto非劣目标域有很好的分散性. 相似文献
11.
提出了一种基于自适应惯性权重的多目标粒子群优化算法AWMOPSO,采用新的适应值分配机制,在搜索过程中根据粒子的适应值对粒子进行分类,动态调整粒子的惯性权重以控制粒子的开发和探索能力。用外部精英集保存非支配解,并通过拥挤距离维持解的多样性。引入精英迁移和局部扰动策略,提高收敛的速度和精度。典型的测试函数的计算结果表明了算法能够快速逼近Pareto最优前沿,是求解多目标优化问题的有效方法。 相似文献
12.
基于动态Pareto解集的微粒群优化算法及其在多目标规划中的应用 总被引:5,自引:0,他引:5
在传统的微粒群优化算法的基础上,提出了一种基于动态Pareto解集的求解多目标规划问题的方法。Pareto解集在每次迭代过程中进行动态更新和信息共享,在加入新产生的Pareto近似最优解同时去除解集中已经不是Pareto解的数据,每个个体随机地与Pareto解集中的结果进行信息交换,从而保证在快速找到Pareto解的同时保持多样性。并通过三个标准的测试函数证明了算法的有效性。 相似文献
13.
粒子群算法是一种新的基于群体智能的启发式全局优化算法,其概念简单,易于实现,而且具有良好的优化性能,目前已在许多领域得到应用。但在求解高维多峰函数寻优问题时,算法易陷入局部最优。结合文化算法和高斯变异的思想,提出一种基于文化算法和高斯变异的多群协同粒子群算法。该算法可以摆脱局部最优解对微粒的吸引,基于典型高维复杂函数的仿真结果表明,与多种群粒子群优化算法相比,该混合算法具有更好的优化性能。 相似文献
14.
融合了粒子群算法(PSO) 和Solver 加载宏,形成混合PSO-Solver算法进行优化问题的求解。PSO作为全局搜索算法首先给出问题的全局可行解,Solver则是基于梯度信息的局部搜索工具,对粒子群算法得出的解再进行改进,二者互相结合,既加快了全局搜索的速度,又有效地避免了陷入局部最优。算法用VBA语言进行编程,简单且易于实现。通过对无约束优化问题和约束优化问题的求解,以及和标准PSO、其他一些混合算法的比较表明,PSO-Solver算法能够有效地提高求解过程的收敛速度和解的精确性。 相似文献
15.
通过分析中国证券市场现实投资环境和实际特点,建立了一个考虑完整费用的证券投资组合模型。针对标准粒子群算法容易陷入局部最优和搜索精度不高的缺点,提出了基于捕食策略的粒子群算法,将其用于求解投资组合模型。捕食搜索策略可以通过调节限制级别来控制粒子群的搜索空间,从而平衡全局搜索和局部搜索。通过实例分析验证了算法的有效性。 相似文献
16.
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献
17.
肖宁 《计算机工程与应用》2010,46(22):43-46
随机机会约束规划是一类有着广泛应用背景的随机规划问题,采用随机仿真产生样本训练BP网络以逼近随机函数,然后在微粒群算法中利用神经网络计算适应值和实现检验解的可行性,从而提出了一种求解随机机会约束规划的混合智能算法。最后通过两个实例的仿真结果说明了算法的正确性和有效性。 相似文献
18.
训练支持向量机的本质问题就是求解二次规划问题,但对大规模的训练样本来说,求解二次规划问题困难很大。遗传算法和粒子群算法等智能搜索技术可以在较少的时间开销内给出问题的近似解。量子粒子群优化(QPSO)算法是在经典的微粒群算法的基础上所提出的一种有较高收敛性和稳定性的进化算法。将操作简单而收敛快速的QPSO算法运用于训练支持向量机,优化求解二次规划问题,为解决大规模的二次规划问题开辟了一条新的途径。 相似文献
19.
提出了一种改进型信赖域微粒群算法来求解带有不等式约束优化问题。粒子群每一次进化后,对所有粒子执行信赖域搜索,寻找更优个体,从而增加了微粒群算法的局部搜索能力。把算法应用于供应商补货优化,实验结果表明,该方案能够有效地减少供应商的补货成本,具有较好的应用价值。 相似文献