首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
掺Li2O-B2O3-SiO2玻璃低温烧结MgTiO3-CaTiO3陶瓷及其微波介电性能   总被引:13,自引:2,他引:13  
童建喜  张启龙  杨辉  孙慧萍 《硅酸盐学报》2006,34(11):1335-1340
研究了Li2O-B2O3-SiO2玻璃(LBS)对MgTiO3-CaTiO3(MCT)介质陶瓷烧结特性、相组成和介电性能的影响,分析了MCT陶瓷与银电极的共烧行为.结果表明:通过液相烧结,LBS能有效降低MCT烧结温度至890℃.X射线衍射结果显示有Li2MgTi3O8、硼钛镁石以及Li2TiSiO5等新相生成.随着LBS添加量的增大,陶瓷致密化温度和饱和体积密度降低,介电常数εr品质因数与谐振频率乘积Q×f也呈现下降趋势,频率温度系数δf向负值方向移动.添加质量分数为20%的LBS的0.97MgTiO3-0.03CaTiO3陶瓷在890℃烧结4h,获得最佳性能:εr=16.4,Q×f=11 640GHz,τf=-1.5×10-6/℃.陶瓷与银电极共烧界面结合状况良好,无明显扩散.该材料可用于制造片式多层微波器件.  相似文献   

2.
(Mg1-xCox)TiO3基微波陶瓷介电性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以MgO,Co2O3和TiO2为原料,用固相反应法制备了(Mg1-xCox)TiO3(MCT)系陶瓷.研究了CoTiO3含量对其微观结构和微波介电性能的影响.结果表明:添加适量的CoTiO3,可以适当降低烧结温度,调整烧结温度范围.当掺入量为10 mol%,烧结温度为1350 ℃时,MCT陶瓷具有优良微波介电性能:εr=18.99;Q×f=154000 GHz,τf=-45 ppm/℃.  相似文献   

3.
采用固相烧结法制备(1–x)Li_(1.0125)Mg PO_4–x Ba_3(VO_4)_2复相陶瓷,研究了Ba_3(VO_4)_2掺杂对复相陶瓷相组成、烧结特性、显微组织和微波介电性能的影响。结果表明:(1–x)Li_(1.0125)Mg PO_4–x Ba_3(VO_4)_2陶瓷中仅存在Li_(1.0125)Mg PO_4和Ba_3(VO_4)_2相。Ba_3(VO_4)_2的添加能明显降低Li_(1.0125)MgPO_4陶瓷的烧结温度。随着Ba_3(VO_4)_2含量的增加,复相陶瓷的相对介电常数ε_r逐渐增大,品质因子Q×f逐渐减小,谐振频率温度系数τ_f由负值逐渐变为正值。通过调节x值,可获得近零的τ_f值。0.5Li_(1.0125)MgPO_4–0.5Ba_3(VO_4)_2复相陶瓷经875℃烧结2 h后具有最佳微波介电性能,即ε_r=9.72,Q×f=57 347 GHz,τ_f=-1.9×10~(-6)/℃,是一种极具潜力的低温共烧介质材料。  相似文献   

4.
水热法制备Ba6-3xNd8+2xTi18O54微波介质陶瓷   总被引:3,自引:0,他引:3  
利用水热法合成了Ba6-3xNd8 2xTi18O54微波介质陶瓷,并对合成的微波介质陶瓷进行了X射线衍射分析和性能测试.结果表明:选择活性较大的前驱物[如Nd(OH)3,TiCl4],用水热法在360℃保温12h,能合成纯的Ba6-3xNd8 2xTi18O54粉体,极大地降低了粉体的合成温度.用水热法合成的Ba6-3xNd8 2xTi18O54粉体制备陶瓷,其烧结温度为1 250℃,比传统固相法要低100℃左右,陶瓷的介电常数(εr)稍大于用固相法制备的陶瓷,品质因数(Q)也有较大的提高,谐振频率温度系数(τf)也有所改善,当x=2/3时,水热法制备的Ba6-3xNd9 2xTi18O54陶瓷具有最佳微波介电性能:εr=88,Q与谐振频率(f)的乘积Q×f=8 890 GHz,τf=24x10-6/℃.  相似文献   

5.
采用固相烧结工艺制备低损耗、非化学计量比Zn_(1.01)Nb_2O_6微波介电陶瓷。研究了添加不同量的Li_2CO_3–B_2O_3–V_2O_5(LBV)对Zn_(1.01)Nb_2O_6陶瓷烧结温度、表面形貌以及微波介电性能的影响。结果表明:LBV作为助烧剂,在陶瓷烧结过程中产生了液相,当添加剂含量大于1.5%(质量分数)时,LBV与基体陶瓷发生了化学反应。液相的产生、副相LiZnNbO_4的形成以及V~(5+)的扩散共同改善了陶瓷的烧结行为,使烧结温度由1 175℃低至950℃。LBV加入到基体陶瓷后对微波介电性能影响较小。当LBV添加量为1.0%,并在950℃保温4 h后,Zn_(1.01)Nb_2O_6陶瓷微波介电性能最优:ε_r=20.6,Q×f=90 472 GHz,τ_f=–85.9×10–6℃~(–1)。  相似文献   

6.
采用固相反应法制备BaAl_2Si_2O_8–x%ZnO–B_2O_3(x=0,1,2,3,4,质量分数)陶瓷。探究了不同含量的ZnO–B_2O_3(ZB)烧结助剂对BaAl_2Si_2O_8(BAS)陶瓷的烧结温度、结构及微波介电性能的影响。结果表明:ZB烧结助剂可降低BAS陶瓷的烧结温度。并且能够促进BAS晶体结构由六方相转变为单斜相,当x=1时,六方相BAS全部转变为单斜相BAS,并且ZB烧结助剂添加量在4%以内,无第二相生成。添加1%的ZB烧结助剂可促进样品晶粒长大,密度、介电常数和品质因数增大,谐振频率温度系数的绝对值减小。在x=1,烧结温度为1 350℃时,能够获得品质因数较高的单斜相BAS,其介电性能为:ε_r=6.45,Q×f=40 608 GHz,τf=–22.46×10~(–6) K~(–1)。  相似文献   

7.
采用固相反应法制备了0.965 MgTiO3-0.035SrTiO3 (MST)微波介质陶瓷,选用Zn2+对MST陶瓷进行了A位离子掺杂,研究了不同Zn2+掺杂量对陶瓷烧结性能、晶相组成、显微结构及微波介电性能的影响.结果表明,Zn2的掺入促进了陶瓷的烧结,显著提高了陶瓷的致密度,且没有改变陶瓷的主晶相.在掺杂量小于0.04mol%范围内,随着Zn2+掺杂量的增加,陶瓷的介电常数增加,品质因素和频率温度系数略有降低.中间相MgTi2 O5的衍射峰强度随着Zn2+掺杂量的增加逐渐减弱直至完全消失.当Zn2掺杂量为x=0.03时,陶瓷的烧结温度由1380℃降低至1290℃,并呈现优异的微波介电性能:εr=22.51,Q×f=16689 GHz,τf=-4.52×10-6/℃.  相似文献   

8.
采用固相反应法制备Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷,研究了其相组成、显微组织及微波介电性能的变化规律。结果表明:当W6+取代量在0~0.1范围内,Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷均显示出单相钒铁铜矿结构,形成了Li_2Zn_2(Mo(1–x)Wx)_3O_(12)固溶体。随着W~(6+)代量增加,Li_2Zn_2(Mo(1–x)W_x)_3O_(12)陶瓷的相对密度、介电常数和Q×f值均先增大后减小,其τ_f值则逐渐增大。当W6+取代量为0.025时,Li_2Zn_2(Mo_(0.975)W_(0.025))_3O_(12)陶瓷经630℃烧结2 h后具有较好的微波介电性能:ε_r=10.75,Q×f=630 95 GHz,τ_f=–65×10~(-6)/℃。  相似文献   

9.
用传统固相法制备48.3(0.61Ca Ti O_(3-x )Nd_(2/3)TiO_3)-51.7Mg TiO_3复合陶瓷。研究在1 320℃烧结时Nd~(3+)含量和保温时间对复合陶瓷微观形貌、相组成和介电性能的影响。结果表明:复合陶瓷的气孔率随Nd~(3+)含量的增加先下降后上升,相对介电常数εr和谐振频率温度系数τf随Nd~(3+)含量的增加而降低,品质因数Q·f值随Nd~(3+)含量的增加先上升后下降,之后再上升。当x0.48时,保温7 h所得样品的气孔率较低;x≥0.48时,保温4 h的样品气孔率较低。保温时间对材料谐振频率温度系数几乎没有影响。当烧结温度为1 320℃、保温4 h和Nd~(3+)含量为0.54时,样品性能较佳:εr=45.28,τf=73.76×10–6/℃,Q·f=35 002GHz。加入Nb~(5+)并复合Zn Al_2O_4后,得到的0.96(48.3(Ca_(0.60)Nb_(0.16)TiO_(3-0.54)Nd_(2/3)TiO_3)-51.7Mg Ti O_3)-0.04Zn Al2O4复合陶瓷的εr=41.24、τf=39.44×10–6/℃。  相似文献   

10.
研究了烧结助剂BaCu(B2O5)(BCB)对2.5ZnO-2.5Nb2O5-5TiO2(ZNT)陶瓷的微观结构、烧结特性及介电性能的影响。结果表明:当烧结温度高于900℃时,添加BCB的陶瓷片的致密度高于纯ZNT的致密度。介电常数(εr)随着BCB添加量的增加先增大后略有减小。由于液相的存在,品质因数和谐振频率的积(Qf)随着BCB添加量的增大而减小。谐振频率温度系数(τf)与纯ZNT陶瓷相比更接近零。添加质量分数为3%BCB的ZNT陶瓷在900℃烧结3h后得到良好的介电性能:εr=48,Qf=15258GHz,τf=41×10-6/℃(5GHz)。  相似文献   

11.
采用传统固相反应法制备(1-x)Mg3(VO4)2-xBiNbO4复合微波介质陶瓷材料,研究陶瓷的烧结特性、微观结构和微波介电性能。结果表明:当x从0.2增加到0.6,在最佳烧结温度制备的Mg3(VO4)2-BiNbO4陶瓷的机械品质因数与频率的乘积(Q×f)随x增大而减小,相对介电常数(εr)随x增大而增大,谐振频率温度系数(τf)随x增大从正变为负;通过调节x值,在x=0.2处获得近零的τf。Mg3(VO4)2与BiNbO4的复合可实现低温烧结;当x=0.2、850℃的低温致密成瓷获得了优良的微波介电性能:εr=14.76,Q×f=27930GHz(f0=8.29GHz),τf=3.65×10-6/℃。  相似文献   

12.
以分析纯的ZnO、ZrO_2、CuO及Nb_2O_5为原料,采用传统固相法制备了Zn_(1–x_Cu_xZrNb_2O_8(ZCZN,x=0.00–0.05)微波介质陶瓷,研究了不同CuO添加量对ZCZN陶瓷的烧结性能、显微结构、相组成以及微波介电性能的影响,利用X射线衍射仪、扫描电子显微镜和网络分析仪等对其微观结构、形貌以及微波介电性能进行表征。结果表明:CuO的添加能有效降低ZnZrNb_2O_8陶瓷的烧结温度,提高其品质因数和介电常数。当x=0.03时,陶瓷可在1 200℃烧结并获得最佳微波介电性能:介电常数ε_r=30.1,品质因数Q×f=53 037 GHz,频率温度系数τ_f=–57.21×10^(–6)/℃。  相似文献   

13.
采用固相烧结法,探讨了MnCO_3掺杂降低Ba(Mg_(1/3)Nb_(2/3))O_3(BMN)烧结温度的机理,研究了MnCO_3掺杂量对BMN陶瓷微波介电性能的影响。结果表明,适量的MnCO_3掺杂可以促进烧结,有效降低BMN陶瓷的烧结温度,改善陶瓷的微波介电性能。当MnCO_3掺杂量为4%(质量分数)时,BMN陶瓷的烧结温度从纯相烧结时的1 550℃降低到1 250℃,表观密度ρ=6.36 g/cm^3,相对理论密度达到98.6%,并具有良好的微波介电特性:高相对介电常数ε_r=31.4,高品质因数与谐振频率的乘积Q·f=99 200 GHz(8 GHz),接近于零的谐振频率温度系数τ_f=3×10^(–7)/℃。  相似文献   

14.
研究了烧结助剂BaCu(B2O5)(BCB)对0.4CaTiO3-0.6(Li1/2Nd1/2)TiO3(CLNT)介质陶瓷的烧结特性、相组成、微观形貌及介电性能的影响。结果表明:添加少量的BCB能使CLNT陶瓷的烧结温度从1300℃降低至1050℃。随着BCB添加量的增加,介电常数下降,频率温度系数向负值偏移。添加4wt%BCB的CLNT陶瓷在1050℃烧结2h,获得了最佳的介电性能:εr=96.5,tanδ=0.017,τf=-13.6ppm/℃,满足高介多层片式微波元器件的设计要求。  相似文献   

15.
采用固相反应法制备BaAl_2Si_2O_8-x wt%Bi_2O_3-B_2O_3(x=0,1,2,3,4)陶瓷。探究了添加不同量的Bi_2O_3-B_2O_3(BiB)烧结助剂对BaAl_2Si_2O_8(BAS)陶瓷的烧结温度、结构及微波介电性能的影响。结果表明:添加1 wt%的BiB烧结助剂可促进BAS晶体结构由六方相全部转变为单斜相,并且BiB烧结助剂添加量在1~4 wt%范围内,均为单一单斜相。添加3 wt%的Bi B烧结助剂可使BAS陶瓷烧结密度增加到最大值,并能将烧结温度由1400℃降低至1250℃。在x=3,烧结温度为1250℃时,BAS陶瓷的介电常数和品质因数均达到最大值,并且谐振频率温度系数的绝对值也显著减小,其介电性能为:ε_r=6.2,Q·f=21 972 GHz,τ_f=-17.06×10~(-6)℃~(-1)。  相似文献   

16.
O.4CaTiO3-O.6(Li1/2Nd1/2)TiO3陶瓷的低温烧结及其介电性能   总被引:1,自引:0,他引:1  
研究了烧结助剂2ZnO-B2O3玻璃(ZB)对0.4CaTiO3-0.6(Li1/2Nd1/2)TiO(3CLNT)微波介质陶瓷的烧结特性、相组成、微观形貌及介电性能的影响。结果表明:添加少量的ZB玻璃能使CLNT陶瓷的烧结温度从1300℃降低至950℃。随着ZB玻璃添加量的增加,介电常数先增大后减小,频率温度系数先趋于零后向负值偏移,介电损耗先下降后趋于稳定。添加3wt%ZB玻璃的CLNT陶瓷在950℃烧结2h,获得了最佳的介电性能:εr=91.13,tanδ=0.0133,τf=10.5ppm/℃,满足高介多层片式微波元器件的设计要求。  相似文献   

17.
以Ca0.2(Li1/2Sm1/2)0.8TiO3(CLST-0.8)为基料,添加质量分数10%的CaO-B2O3-SiO2(CBS)复合氧化物、4%的Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料和0~2%的CuO氧化物为复合烧结助剂,研究了CuO含量的变化对CLST-0.8陶瓷的低温烧结行为及微波介电性能的影响.随着CuO添加量的增加,陶瓷体积密度、介电常数εr、无载品质因数与谐振频率乘积Qf值,都呈先增加后降低,谐振频率温度系数τf则呈先降低后升高的趋势.添加10%CBS、4.0%LBSCA和1.0%CuO的CLST-0.8微波介质陶瓷,可在900℃下保温5h烧结,并具有较佳的微波介电性能:εr=58.36,Qf=2011GHz, τf=3.44 ppm/℃.  相似文献   

18.
研究了ZnO-B2O3-SiO2(ZBS)玻璃对陶瓷的烧结性能及微波介电特性的影响.研究表明ZBS的掺入能有效降低Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ陶瓷体系的烧结温度150-200℃,谐振频率温度系数随ZBs掺入量增加及烧结温度的提高,由负值向正值方向移动.在1000℃,掺入质量分数7wt%的ZBN,陶瓷微波介电性能最佳:εr=31.1,Qf=9530GHz,τf=8.9ppm/℃.在960℃烧结4小时,可获得介电性能为:εг=28.6,Qf=6410GHz,τf=-9.8ppm/℃陶瓷样品.  相似文献   

19.
Mg4Nb2O9具有与α-Al2O3相同的刚玉型晶体结构,可望成为新一代高Q、低ε基板材料.然而,该材料却具有很大的负谐振频率温度系数(τf=-7.05×10-5/℃),期望通过添加TiO2(τf=4.50×10-4/℃)以达到调整的目的.适量的添加TiO2将Mg4Nb2O9陶瓷的烧结温度降低了约100℃,并增强了陶瓷的性能,微波介电性能与其密度呈线性关系.由于添加的TiO2与Mg5Nb4O15反应形成了(Ng,Ti)5(Nb,Ti)4O15第二相,使得TiO2对该陶瓷τf值的调整作用不显著.1300℃、5h烧结添加质量分数为2.5%的TiO2的Mg4Nb2O9陶瓷具有最佳的性能:εr=13.61,Q·f=196620GHz,τf=-5.04×10-5/℃.  相似文献   

20.
采用传统固相反应法制备了(1-x)(0.97Li_(2.3)MgTi_3O_(8.15)-0.03R3725)-xTiO_2(0.04≤x≤0.10,质量分数)陶瓷,研究了不同含量TiO_2添加对0.97Li_(2.3)MgTi_3O_(8.15)-0.03R3725 (0.97LMT-0.03R3725)陶瓷烧结特性、相结构、微观形貌以及微波介电性能的影响。结果表明:当x≤8%时,(1-x)(0.97LMT-0.03R3725)-xTiO_2所有组分的物相都能够被Li_2MgTi_3O_8和Li_2O标记,并且随着x的增加,Li_2O特征峰的相对强度在逐渐降低,当x增加到10%时,Li_2O反应完全,TiO_2过量,出现TiO_2的特征峰。随着TiO_2含量的增加,陶瓷的烧结温度、ε_r、τ_f和σ_f(抗弯强度)增加,ρ和Q·f先增加后减小。烧结温度为880℃时,0.92(0.97LMT-0.03R3725)-0.08TiO_2陶瓷表现出了优良的综合性能:ε_r=26.8,Q·f=36386 GHz(7.05 GHz),τ_f=3.02×10~(-6)℃~(-1),σ_f=182.5 PMa。且在此温度下介质材料与Ag电极兼容性良好,表明该材料是制备LTCC器件的备选材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号