首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the microstructural evolution of the metastable β phase during isothermal aging in a Cu–22.60Al–3.26Be (at%) polycrystalline shape memory alloy has been studied by electrical resistivity measurements and microscopical examinations. With an isothermal treatment at around 820 K, the alloy rapidly decomposes into γ2 phase with dendritic morphology, while between 670 K and 760 K the formation of α′ phase followed by the eutectoid decomposition is observed. A TTT diagram was estimated and the stability boundaries of the β phase in the studied alloy were compared with those of other Cu-based shape memory alloys.  相似文献   

2.
The effect of manganese on the microstructure of Mg–3Al alloy, especially the nucleation efficiency of Al–Mn particles on primary Mg, has been investigated in this paper. Mg–0.72Mn was used to fabricate Mg–3Al–xMn (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) alloys, and the grain sizes of these alloys fluctuate at 390 μm indicating addition of manganese does not evidently influence the grain size of Mg–3Al alloy. Through XRD, FESEM and TEM detection, it is found that Al0.89Mn1.11 compound is the dominant Al–Mn phase in Mg–3Al–0.3Mn, Mg–3Al–0.4Mn and Mg–3Al–0.5Mn, and distributes in primary Mg matrix and interdendritic regions with an angular blocky morphology. The number of Al0.89Mn1.11 increases gradually with increasing manganese content while the grain sizes of primary Mg are nearly the same in Mg–3Al, Mg–3Al–0.3Mn, Mg–3Al–0.4Mn and Mg–3Al–0.5Mn, indicating Al0.89Mn1.11 has low nucleation efficiency on primary Mg.  相似文献   

3.
Phase equilibria in the Co-rich Co–Al–W ternary system were determined with a unique diffusion-couple technique in which Co–27Al and Co–15W binary alloys (at. %) were first coupled for interdiffusion and then heat-treated for precipitation. After a diffusion process at 1300 °C for 20 h, concentration gradients of Al and W were formed in the γ-Co(A1) matrix in the vicinity of the coupled interface. After a heat treatment at 900 °C for 500 h the γ′-Co3(Al,W)(L12) phase was formed with a coarsened shape in contact with the γ, CoAl(B2) and Co3W(D019) phases. Additionally, it appeared with a submicron cuboidal shape within the γ matrix. After 2000 h, however, the coarsened γ′ phase became infrequent and the three phases of γ, CoAl and Co3W came into frequent contact with each other. These results clearly demonstrate that the γ′ phase is metastable and the three phases of γ, CoAl and Co3W are thermodynamically in equilibrium at 900 °C in the Co–Al–W ternary system.  相似文献   

4.
The microstructures and mechanical properties of cast Mg–Zn–Al–RE alloys with 4 wt.% RE and variable Zn and Al contents were investigated. The results show that the alloys mainly consist of α-Mg, Al2REZn2, Al4RE and τ-Mg32(Al,Zn)49 phases, and a little amount of the β-Mg17Al12 phase will also be formed with certain Zn and Al contents. When increasing the Zn or Al content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of τ-Mg32(Al,Zn)49 phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of β- or τ-phase are critical to the mechanical properties of Mg–Zn–Al–RE alloys. The Mg–6Zn–5Al–4RE alloy with cluster Al2REZn2 phase and low content of β-phase, exhibits the optimal mechanical properties, and the ultimate tensile strength, yield strength and elongation are 242 MPa, 140 MPa and 6.4% at room temperature, respectively.  相似文献   

5.
Infrared dissimilar brazing of α2-Ti3Al and Ti–6Al–4V using Ti–15Cu–25Ni and Ti–15Cu–15Ni filler metals has been performed in this study. The brazed joint consists primarily of Ti-rich and Ti2Ni phases, and there is no interfacial phase among the braze alloy, α2-Ti3Al and Ti–6Al–4V substrates. The existence of the Ti2Ni intermetallic compound is detrimental to the bonding strength of the joint. The amount of Ti2Ni decreases with increasing brazing temperature and/or time due to the depletion of Ni content from the braze alloy into the Ti–6Al–4V substrate during brazing. The shear strength of the brazed joint free of the blocky Ti2Ni phase is comparable with that of the α2-Ti3Al substrate, and strong bonding can thus be obtained.  相似文献   

6.
Z.W. Huang  T. Cong 《Intermetallics》2010,18(1):161-172
Both ingot-cast and forged Ti–44Al–8Nb–1B alloys were exposed at 700 °C in air for up to 10,000 h. The α2 lamellae in the two conditions are found to be thermodynamically unstable and readily decompose through phase transformations of α2 → γ, α2 → B2(ω) and α2 + γ → B2(ω). Widespread B2(ω) forms throughout the lamellar structure, resulting in a significant increase in volume fraction after 10,000-h exposure. This is attributed to the composition similarity between the transformed and parent phases. The partition coefficients for Ti/Al/Nb between B2(ω) and α2 and between B2(ω) and α2 + γ are all measured to be close to 1. The long-term exposure has induced embrittlement owing to oxygen releasing from α2 decomposition. Room-temperature ductility is only 1/5 and 1/3 of the original value for the two conditions, respectively. However, no clear decreasing trend in SN fatigue strength is observed, suggesting that the embrittlement effect of B2(ω) on the surface crack initiation is difficult to detect.  相似文献   

7.
Age-hardening behaviour and the related phase transformation and microstructural changes during isothermal ageing process were studied to elucidate the age-hardening mechanism of an Ag-based dental casting alloy composed of Ag–Pd–Cu–Au–Zn, Ir and In by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and energy dispersive spectroscopic microanalysis (EDS). In the hardness test at 350 and 400 °C, the hardness of the solution-treated specimen began to increase and reached a maximum value with increasing ageing time, and subsequently the hardness decreased gradually. By considering XRD results and SEM observations together, the solution-treated specimen consisted of three phases, the Ag-rich α1 phase as a matrix, the Cu–Pd α2 phase and the CuPd β phase with a CsCl-type as particle-like structures. By ageing the solution-treated specimen, the Ag-rich α1 and Cu–Pd α2 phases were transformed into the Ag-rich α1 and Cu3Pd α2 phases, respectively. The CuPd β phase with a CsCl-type was not changed apparently during the ageing process. From the results of the hardness test, XRD study, SEM observations and EDS analysis, it could be derived that the hardness increased by the diffusion and precipitation of the Cu-rich phase from the Ag-rich matrix during the early stage of phase transformation of α1 into α1 and that the progress of coarsening of the Cu-rich precipitates with an entanglement structure caused the hardness decrease during the later stage of phase transformation of α1 into α1. The particle-like structures composed of the Cu–Pd α2 and the CuPd β phase with a CsCl-type contributed little to the hardness increase which occurred in the early stage of aging process.  相似文献   

8.
The corrosion behaviour of two Mg–9Al–Ho alloys (Mg–9Al–0.24Ho and Mg–9Al–0.44Ho) was evaluated by general corrosion measurements and electrochemical methods in 3.5% NaCl solution saturated with Mg(OH)2. The experimental results were compared with that of Mg–9Al alloy without Ho addition. Various corrosion rate tests showed that the addition of Ho obviously enhanced corrosion resistance of Mg–9Al alloy. The microstructure of the three magnesium alloys and the morphology of their corrosion product film were examined by Electron Probe Microanalysis (EPMA) and Energy Dispersion Spectroscopy (EDS). The alloys with Ho addition showed a microstructure characterized by α phase solid solution, which was surrounded by some β phase and grain-like Ho-containing phase. The improvement of corrosion resistance of the Mg–9Al–Ho alloys could be explained by the fact that the deposited Ho-containing phases were less cathodic. Moreover, the corrosion product films on the Ho-containing alloy surface demonstrated their ability to restrain further corrosion.  相似文献   

9.
In this paper the structure and stability of Al–17 wt.%Ni(Al–17Ni) and Al–17 wt.%Ni–2 wt.%Sr alloys prepared by rapid solidification was investigated by means of XRD techniques. Our work demonstrates that both alloys are crystalline and composed of fcc (Al–Ni) solid solution and orthorhombic Al3Ni phases. The ternary alloy shows in addition the presence of small amount of tetragonal Al4Sr phase. In situ XRD experiment demonstrates the stability of the solute solution up to 650 °C, Al3Ni above 750 °C while Al4Sr overcomes melting of the major phases at 800 °C. High-temperature structure analysis proved strong bindings between Al and Ni atoms in Al3Ni phase, corroborating its covalent nature, linear and faster increase of the fcc volume with annealing temperature. The linear correlation between constituting atoms decreases with increase of the temperature.The work also documents the applicability of pair distribution function (PDF) analysis to the study of multiphase crystalline systems.  相似文献   

10.
Al–Ti–B refiners with excess-Ti (Ti:B > 2.2) perform adequately for wrought aluminium alloys but they are not as efficient in the case of foundry alloys. Silicon, which is abundant in the latter, forms silicides with Ti and severely impairs the potency of TiB2 and Al3Ti particles. Hence, Al–Ti–B alloys with excess-B (Ti:B < 2.2) and binary Al–B alloys are favored to grain refine hypoeutectic Al–Si alloys. These grain refiners rely on the insoluble (Al,Ti)B2 or AlB2 particles for grain refinement, and thus do not enjoy the growth restriction provided by solute Ti. It would be very attractive to produce excess-B Al–Ti–B alloys which additionally contain Al3Ti particles to maximize their grain refining efficiency for aluminium foundry alloys. A powder metallurgy process was employed to produce an experimental Al–3Ti–3B grain refiner which contains both the insoluble AlB2 and the soluble Al3Ti particles. Inoculation of a hypoeutectic Al–Si foundry alloy with this grain refiner has produced a fine equiaxed grain structure across the entire section of the test sample which was more or less retained for holding times up to 15 min.  相似文献   

11.
Present article is focused on the microstructural features of Al–Ti–C–Sr master alloy, an inoculant for simultaneous grain refinement and modification of hypoeutectic Al–Si alloys. This master alloy is basically a metal matrix composite consisting of TiC and Al4Sr phases formed in situ in the Al-matrix. TiC particles initiate the refinement of primary α-Al through heterogeneous nucleation in molten hypoeutectic Al–Si alloy, while Al4Sr phase dissolves in molten Al–7Si alloy enriching the melt with Sr, which eventually leads to modification of eutectic silicon during solidification of the Al–7Si alloy casting. Thus present master alloy serves in both ways, as a grain refiner and a modifier for hypoeutectic Al–Si alloys.  相似文献   

12.
The corrosion behavior of Cu–Al and Cu–Al–Be (0.55–1.0 wt%) shape-memory alloys in 0.5 M H2SO4 solution at 25 °C was studied by means of anodic polarization, cyclic voltammetry, and alternative current impedance measurements. The results of anodic polarization test show that anodic dissolution rates of alloys decreased slightly with increasing the concentrations of aluminum or beryllium. Severe intergranular corrosion of Cu–Al alloy was observed after alternative current impedance measurement performed at the anodic potential of 0.6 V. However, the addition of a small amount of beryllium was effective to prevent the intergranular corrosion. The effect of beryllium addition on the prevention of intergranular corrosion is possibly attributed to the diffusion of beryllium atoms into grain boundaries, which in turn deactivates the grain boundaries.  相似文献   

13.
Phase equilibria between 540 and 1010 °C were studied in Al–Cu–Rh alloys containing more than 50 at.% Al. Congruent equiatomic AlRh dissolves more than 40 at.% Cu and extends up to 58 at.% Al at the high-Cu part of its compositional range. High-temperature cubic C-Al5Rh2 (C-phase) dissolves up to 13 at.% Cu, “Al3Rh” (6-phase) up to 15 at.% Cu and Al9Rh2 up to 1.5 at.% Cu. The solubility of the third element in other binary Al–Rh and Al–Cu phases is below 0.5 at.%. Close to the high-Cu limit of the C-phase region the fcc C2-phase structurally related to the C-phase is formed. Stable decagonal phase (D1-phase) is formed below 1005 °C in a compositional range extending from Al65Cu16Rh19 to Al62Cu23Rh15, which shifts to higher Cu concentrations with decreasing temperature. An additional ternary phase forming around the Al70Cu20Rh10 composition below 660 °C was revealed. Partial 1010, 990, 900, 800, 700, 600 and 540 °C isothermal sections were determined.  相似文献   

14.
The phase equilibria at 500 °C in the Al–Ce–Ni system in the composition region of 0–33.3 at.% Ce are investigated using XRD and SEM/EDX techniques applied to equilibrated alloys. The previously reported ternary phases and the variation of the lattice parameters versus the composition for different solid solution phases are investigated. It is confirmed that τ2(Al2CeNi) exists at 500 °C, while τ3(Al5Ce2Ni5) does not exist at 500 °C. A new compound τ9 with composition of about Al35Ce16.5Ni48.5 is found. The solubility of Ni in Al11Ce3 and αAl3Ce is generally about 1 at.%, while the solubility of Ni in Al2Ce is measured to be 2.7 at.%. The solubility of Ce in Al3Ni, Al3Ni2, AlNi and AlNi3 is all less than 1 at.%. The solubility of Al in CeNi5, Ce2Ni7 and CeNi3 is measured to be 30.4, 4.8 and 9.2 at.%, respectively, while there is no detectable solubility for Al in CeNi2. A revised isothermal section at 500 °C in the Al–Ce–Ni system has been presented.  相似文献   

15.
The effect of rare earth element Ce addition on the microstructure, martensitic transformation, mechanical properties and damping behavior of the Cu–Al–Mn shape memory alloys (SMAs) had been investigated. It is shown that the Ce addition makes the grain refinement and affects the martensitic transformation temperature. The tensile strength and the ductility of the Cu–Al–Mn alloys can be enhanced by the Ce addition. Damping capacity tan δ of the martensite for the Cu–Al–Mn–Ce alloys is strain amplitude dependent. The Ce addition has obvious effects on the damping properties of the martensite. With the increase of the Ce content, the damping capacity increases initially and then decreases.  相似文献   

16.
Nuclear magnetic resonance (NMR) has been used for the first time to directly monitor the dynamic partitioning of Cu atoms from shearable precipitates into the solid solution as a function of straining at room temperature in two Al–Cu-based alloys. Al–3Cu–0.05Sn (wt.%) and Al–2.5Mg–1.5Cu (wt.%) alloys were heat-treated to provide a fine distribution of 5 nm Guinier–Preston (GP) zones and <1 nm Guinier–Preston–Bagaryatsky (GPB) zones, respectively, and were then subjected to rolling strains up to 100%. It is shown that in the Al–Cu–0.05Sn alloy, strains up to 40% can pump solute from the 5 nm GP zones back into solid solution for the temperature and strain-rate of deformation employed here. In the case of the Al–Cu–Mg alloy, no dissolution of the GPB zones is observed. A simple model for the strain-induced dissolution of the shearable precipitates is given and compared with the experimental results. The dependence of the Cu repartitioning process on the precipitate size is emphasized. These observations and modeling give guidelines for the design of Al–Cu-based alloys to exploit the dynamic interplay of strain-induced Cu partitioning between metastable states, e.g. solid solution and GP (or GPB) zones, for tailoring ultimate mechanical properties. It is proposed that this strain-induced phase transformation is a form of dynamically responding microstructure that can be employed to obtain aluminum alloys with well-designed microstructures.  相似文献   

17.
CaLi2−xMgx (0 ≤ x ≤ 2) which has the C14-type Laves phase structure has been successfully synthesized and hydrogenated. The C14-type Laves phase structure was kept after hydrogenation of CaLi2−xMgx (x = 0.2, 0.5, 1). After hydrogenation of CaLi2 and CaMg2, the Laves phase disappeared. The CaH2 and LiH phases were formed from CaLi2 and the CaH2 and Mg phases from CaMg2, respectively. CaLi2−xMgx (0 < x < 2) ternary alloys formed stable hydride phases with the C14-type Laves phase structure in contrast to CaLi2 and CaMg2 binary alloys.  相似文献   

18.
Cu segregation was detected at the Q/α-Al interface in an Al–Mg–Si–Cu alloy by energy-filtered transmission electron microscopy. By contrast, in a Cu-free Al–Mg–Si alloy no segregation was observed at the interface between the matrix and Type-C precipitate.  相似文献   

19.
Oxidation of a quaternary two-phase Cu–40Ni–17.5Cr–2.5Al (at.%) alloy was investigated at 973–1073 K in 101 kPa O2. The alloy is composed of two phases. One light phase with lower Cr content forms the matrix of the alloy, and the other medium gray phase richer in Cr is presented in the form of continuous islands. At 973 and 1073 K, the kinetic curves for the present alloy deviate evidently from the parabolic rate law. They show a large mass gain in initial stage, and then their oxidation rates decrease evidently with time until they become very small up to 24 h. Cross sectional morphologies show the present alloy is able to form continuous external scales of chromia over the alloy surface with a gradual decrease in the oxidation rate. However, the previous studies showed that a ternary two-phase Cu–40Ni–20Cr alloy is unable to form protective external scales of chromia over the alloy surface, but is able to form a thin and very irregularly continuous layer of chromia at the top of the mixed internal oxidation region. Therefore, substituting Cr in Cu–40Ni–20Cr alloy with 2.5 at.% Al is able to decrease the critical content required to form Cr oxide and help to form continuous external scales of chromia under lower Cr content in two-phase alloys.  相似文献   

20.
The disorder–order transformation of three-dimensional Ni–Al–X (X = Ti, Cr, Co) ternary alloys is simulated on the atomic scale by a cellular automata (CA) method. The interaction of atom pairs and the total energy of the system are calculated using Lennard–Jones potential. The variables to be optimized in yielding a minimized energy were found to include the atomic positions, the (long- and short-range) ordering parameters, the volume fraction of the γ′ (L12) phase, and the configuration energy dependence on the number of CA steps. The results are consistent with the ordering kinetics and the atomic arrangement found by a cluster variation method (CVM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号