首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
裂解汽油中噻吩加氢脱硫反应宏观动力学   总被引:1,自引:0,他引:1  
采用微型等温积分反应器,以组分苯、苯乙烯、噻吩与溶剂正己烷的混合物作为模型化合物,在消除催化剂外扩散影响的基础上,建立了幂函数型的噻吩加氢脱硫反应宏观动力学模型并研究裂解汽油二段加氢过程中噻吩在Co-Mo/Al2O3催化剂上的加氢脱硫反应动力学.通过对比研究噻吩在单一体系和模型化合物中的加氢脱硫反应,探讨了裂解汽油中不饱和烃对噻吩加氢脱硫的影响.实验结果表明,裂解汽油中的不饱和烃会影响噻吩加氢脱硫反应速率,但并不改变其反应机理.噻吩转化率的模型计算值与实验值吻合较好,说明所建立的动力学模型适合描述裂解汽油二段加氢过程中噻吩的加氢脱硫反应.  相似文献   

2.
目前国家对成品油中硫含量的限制越来越严格。加氢脱硫是实现深度脱硫的重要途径,加氢脱硫动力学受到研究者的广泛关注。对不同种类的加氢脱硫动力学模型的应用范围进行简述,综述了汽油、柴油、蜡油和渣油等不同馏分油加氢脱硫动力学模型的研究进展,对馏分油动力学方程的研究进行了展望,提高加氢脱硫过程的认识。  相似文献   

3.
汽油深度脱硫技术进展   总被引:2,自引:0,他引:2  
汽车尾气带来的环境污染日益严重,生产超低硫汽油受到了人们的关注.本文从加氢脱硫和非加氢脱硫两方面总结了国内外目前应用和开发的先进脱硫技术.加氢工艺可使汽油含硫量降至10μg/g,但是加氢工艺氢耗大,能耗大.而吸附脱硫和氧化脱硫及生物脱硫等非加氢工艺降低氢耗,增强环保,是目前研究的热点.  相似文献   

4.
FCC汽油选择性加氢脱硫工艺研究进展   总被引:1,自引:0,他引:1  
相春娥  宫海峰  刘笑 《当代化工》2011,40(10):1054-1057
加氢脱硫(HDS)是实现FCC汽油馏分脱硫的有效途径,但是传统工艺在脱硫的同时,由于大量烯烃加氢饱和造成辛烷值损失严重.采用选择性加氢脱硫工艺,可以减少辛烷值损失.本文介绍了国内外FCC汽油选择性加氢脱硫工艺的研究进展.  相似文献   

5.
FCC汽油加氢脱硫工艺研究进展   总被引:1,自引:0,他引:1  
刘笑  高静洁  罗辉 《当代化工》2011,40(4):383-387
为了应对日趋严峻的环境问题,对汽油硫含量的要求越来越严格,而加氢脱硫技术是目前降低汽油硫含量最切实可行和最为有效的手段.综述了国内外有关FCC汽油加氢脱硫工艺的研究进展.现有的FCC汽油加氢脱硫工艺主要有两条技术路线:一是深度加氢脱硫后再恢复辛烷值(如Oct-Gain和Isal);二是选择性加氢脱硫(如Prime-C+...  相似文献   

6.
为满足日益严格的清洁汽油标准不断降低硫和烯烃含量的需求,国内外在汽油清洁化领域开展了大量的研究工作。本文综述了近年来相关研究开发工作的进展,概述了催化裂化汽油中硫化物和烯烃的分布及特点、各种烃类的辛烷值、各种烯烃的加氢反应活性及其对加氢脱硫反应的抑制作用,重点分析比较了国内外典型的催化裂化汽油清洁化工艺技术(包括选择性加氢脱硫工艺、选择性加氢脱硫-烯烃定向转化工艺、临氢吸附脱硫工艺以及选择性加氢脱硫-溶剂抽提组合工艺)的优缺点,简述了加氢脱硫催化剂的活性相模型及选择性加氢脱硫催化剂的研究开发现状,指出实现烯烃的定向转化将是未来催化裂化汽油清洁化技术的重点研发方向,以期为后续的研究开发提供参考。  相似文献   

7.
汽油深度脱硫的技术进展   总被引:1,自引:0,他引:1  
介绍了加氢脱硫和非加氢脱硫2种汽油脱硫技术。综述了近年来汽油深度脱硫机理方面的研究和技术进展。  相似文献   

8.
催化汽油加氢脱硫装置在炼油化工企业中起着重要的作用。近年来引进了新技术,加氢脱硫取得了很大进展。整体而言,炼油化工企业催化汽油加氢脱硫工艺的选择比较困难,加之近年来环境的污染问题愈发严峻,随着我国人民环保意识的不断提高,也推动了各行各业的生产技术和产品的环保性能。因此,笔者于本文中分析了炼化企业催化汽油加氢脱硫技术的现状,以及催化汽油中利用加氢脱硫的化学方法进行生产的工节能方向,并探讨了提高催化汽油加氢脱硫技术的未来前景。  相似文献   

9.
为满足清洁汽油的新标准,国内外研究了各种各样的脱硫技术,主要有选择性加氢脱硫技术以及非选择性加氢脱硫技术。本文介绍了国内外典型的加氢脱硫工艺技术,对FCC汽油加氢脱硫工艺技术未来的发展提出了个人的看法。  相似文献   

10.
介绍了加氢脱硫和非加氢脱硫2种汽油脱硫技术。综述了近年来汽油深度脱硫机理方面的研究和技术进展。  相似文献   

11.
刘笑  高静洁  罗辉 《当代化工》2011,40(3):276-280
综述了国内外有关FCC汽油中硫的存在形态、HDS反应原理及其催化剂的研究进展.一般认为,FCC汽油中的硫化物形态主要为噻吩类化合物,且主要集中在重馏分中,汽油的HDS反应原理的研究也都集中在噻吩的加氢脱硫反应上.传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的HDS,可通过改变催化剂的酸性来调整其HDS/HYD选...  相似文献   

12.
To solve the contradiction between ultradeep hydrodesulfurization (HDS) and octane recovery in clean gasoline production, this article proposes a novel two‐stage fluid catalytic cracking (FCC) gasoline hydro‐upgrading process with the selective HDS catalyst in the first reactor and the complemental HDS and octane recovery catalyst in the second reactor. The process achieved the relayed removal of sulfur‐containing compounds with different natures, providing itself with excellent HDS performance, and the hydroisomerization and aromatization of olefins in the second stage endowed the process with superior octane recovery ability and high product yield while remarkably reducing the olefin content of FCC gasoline. The process was also featured by low hydrogen consumption due to the low first‐stage olefin saturation and the balanced second‐stage hydrogenation and dehydrogenation. The two‐stage process developed here sheds a light for efficiently producing ultralow sulfur gasoline from the poor‐quality FCC gasoline of high olefin and sulfur contents. © 2012 American Institute of Chemical Engineers AIChE J, 59: 571–581, 2013  相似文献   

13.
渣油加氢脱硫反应动力学物理模型的建立   总被引:1,自引:0,他引:1  
马成国  翁惠新 《化学世界》2008,49(6):336-339
催化加氢以其轻质油品收率高和产品质量好等优点,成为石油加工行业发展较快的技术之一。石油馏分HDS反应动力学一直受到研究者的广泛关注。提出了以集总方法研究渣油HDS反应动力学的科学合理性。运用集总的方法,根据硫化物HDS反应机理,结合渣油中的硫化物检测分析水平和计算工作量等因素,提出了以渣油四组分中的硫化物分析为基础的HDS动力学模型,不仅可以预测渣油加氢过程中的硫化物转化率,还可预测加氢生成油中的类型硫化物存在情况,具有较好的应用前景。  相似文献   

14.
FCC汽油加氢脱硫/降烯烃新技术的开发   总被引:18,自引:4,他引:14  
介绍了中国石化抚顺石油化工研究院(FRIPP)开发的OCT-M、FRS和OTA催化裂化(FCC)汽油加氢脱硫/降烯烃技术。这些技术针对我国不同硫和烯烃含量的FCC汽油分别进行加氢处理,在大幅度降低硫含量和烯烃含量的同时,辛烷值损失较少,为炼油企业生产清洁汽油提供了灵活、经济的技术解决方案。  相似文献   

15.
Chunshan Song   《Catalysis Today》2003,86(1-4):211-263
This review discusses the problems of sulfur reduction in highway and non-road fuels and presents an overview of new approaches and emerging technologies for ultra-deep desulfurization of refinery streams for ultra-clean (ultra-low-sulfur) gasoline, diesel fuels and jet fuels. The issues of gasoline and diesel deep desulfurization are becoming more serious because the crude oils refined in the US are getting higher in sulfur contents and heavier in density, while the regulated sulfur limits are becoming lower and lower. Current gasoline desulfurization problem is dominated by the issues of sulfur removal from FCC naphtha, which contributes about 35% of gasoline pool but over 90% of sulfur in gasoline. Deep reduction of gasoline sulfur (from 330 to 30 ppm) must be made without decreasing octane number or losing gasoline yield. The problem is complicated by the high olefins contents of FCC naphtha which contributes to octane number enhancement but can be saturated under HDS conditions. Deep reduction of diesel sulfur (from 500 to <15 ppm sulfur) is dictated largely by 4,6-dimethyldibenzothiophene, which represents the least reactive sulfur compounds that have substitutions on both 4- and 6-positions. The deep HDS problem of diesel streams is exacerbated by the inhibiting effects of co-existing polyaromatics and nitrogen compounds in the feed as well as H2S in the product. The approaches to deep desulfurization include catalysts and process developments for hydrodesulfurization (HDS), and adsorbents or reagents and methods for non-HDS-type processing schemes. The needs for dearomatization of diesel and jet fuels are also discussed along with some approaches. Overall, new and more effective approaches and continuing catalysis and processing research are needed for producing affordable ultra-clean (ultra-low-sulfur and low-aromatics) transportation fuels and non-road fuels, because meeting the new government sulfur regulations in 2006–2010 (15 ppm sulfur in highway diesel fuels by 2006 and non-road diesel fuels by 2010; 30 ppm sulfur in gasoline by 2006) is only a milestone. Desulfurization research should also take into consideration of the fuel-cell fuel processing needs, which will have a more stringent requirement on desulfurization (e.g., <1 ppm sulfur) than IC engines. The society at large is stepping on the road to zero sulfur fuel, so researchers should begin with the end in mind and try to develop long-term solutions.  相似文献   

16.
The need for more complete removal of sulfur from fuels is due to the lower allowable sulfur content in gasoline and diesel, which is made difficult by the increased sulfur contents of crude oils. This work reports an experimental study on the hydrodesulfurization (HDS) of diesel in a slurry reactor. HDS of straight-run diesel using a NiMoS/Al2O3 catalyst was studied in a high-pressure autoclave for the following operating conditions: 4.8–23.1 wt% catalyst in the reactor, 320–360 °C, 3–5 MPa pressure, and 0.56–2.77 L/min hydrogen flow rate. It was found that the reaction rate was proportional to the catalyst amount and increased with temperature, pressure and hydrogen flow rate. The reaction kinetics for the HDS reaction in the slurry reactor was obtained. As compared with HDS in a fixed bed reactor, HDS in a slurry reactor is promising because of the uniform temperature profile, high catalyst efficiency, and online removal and addition of catalyst.  相似文献   

17.
油品深度加氢脱硫催化研究进展   总被引:7,自引:4,他引:3  
汽油深度脱硫的关键是在脱硫同时避免辛烷值的下降和汽油收率的损失;柴油深度脱硫的关键是对反应活性最低的4,6-二甲基苯并噻吩类化合物中硫原子的脱除,并克服原料中多环芳烃和含氮物以及产物中H2S对脱硫效果的抑制作用.本文概述了汽油和柴油深度脱硫催化剂在工业应用方面的研究进展,综述了加氢脱硫催化剂基础研究方面的最新动态;强调了在分子和原子水平上认识加氢脱硫催化剂微观结构和反应机理对研发超高活性及选择性深度脱硫催化剂的指导作用.  相似文献   

18.
闫锦涛  李兴彪 《辽宁化工》2010,39(7):700-704
加氢脱硫降烯烃技术在FCC汽油加氢脱硫及烯烃饱和的同时,很好地减少汽油辛烷值损失问题。介绍了采用HDDO-01催化剂与HDDO-02催化剂组合工艺,对催化裂化汽油进行加氢处理,w(硫)〈50μg/g,汽油辛烷值损失〈2。  相似文献   

19.
催化裂化汽油加氢脱硫技术进展   总被引:4,自引:1,他引:3  
介绍了FCC汽油中的主要含硫化合物及其加氢脱硫反应历程。通过对当前国内、外的主要加氢脱硫技术进行总结,提出了针对当前我国FCC汽油加氢改质所面临问题的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号