首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New bone cements that include several additives are currently being investigated and tested. One such additive is sodium fluoride (NaF), which promotes bone formation, facilitating implant integration and success. The influence of NaF on the fatigue performance of the cement as used in biomedical applications was tested in this paper. In fact fatigue failure of the cement mantle is a major factor limiting the longevity of a cemented implant. An experimental bone cement with added NaF (12 wt%) was investigated. The fatigue strength of the novel bone cement was evaluated in comparison with the cement without additives; fatigue tests were conducted according to current standards. The load levels were arranged based on a validated, statistically based optimization algorithm. The curve of stress against number of load cycles and the endurance limit were obtained and compared for both formulations. The results showed that the addition of NaF (12 wt%) to polymethylmethacrylate (PMMA) bone cement does not affect the fatigue resistance of the material. Sodium fluoride can safely be added to the bone cement without altering the fatigue performance of the PMMA bone cement.  相似文献   

2.
After total hip replacement, some cemented titanium stems show above-average early loosening rates. Increased release of wear particles and resulting reaction of the peri-prosthetic tissue were considered responsible. The objective was to develop a test method for analysing the abrasive wear behaviour of cemented stems and for generating wear particles at the interface with the bone cement. By means of the novel test device, cemented hip stems with different designs, surface topographies and material compositions using various bone cements could be investigated. Before testing, the cemented stems were disconnected from the cement mantle to simulate the situation of stem loosening (debonding). Subsequently, constant radial contact pressures were applied on to the stem surface by a force-controlled hydraulic cylinder. Oscillating micromotions of the stem (+/- 250 microm; 3 x 10(6)cycles; 5 Hz) were carried out at the cement interface initiating the wear process. The usability of the method was demonstrated by testing geometrically identical Ti-6A1-7Nb and Co-28Cr-6Mo hip stems (n= 12) with definite rough and smooth surfaces, combined with commercially available bone cement containing zirconium oxide particles. Under identical frictional conditions with the rough shot-blasted stems, clearly more wear particles were generated than with the smooth stems, whereas the material composition of the hip stems had less impact on the wear behaviour.  相似文献   

3.
Clinical studies have shown that adequate fixation of ceramic cups using bone cement is difficult to achieve. As the cement-ceramic bond strength is low, a satisfactory fixation strength requires a cup design that allows mechanical interlocking, although such a design will probably promote cement cracking and therefore cup loosening in the long term. An investigation has been carried out to establish whether a cemented ceramic cup can be designed in such a way that both a satisfactory initial fixation strength is obtained and cement cracking is reduced to levels found around PE cups functioning well in vivo. By means of finite element analysis, the fatigue loading of three geometrically different cemented acetabular cups, with ceramic and PE material properties, has been simulated, and the severity of the crack patterns produced in the cement has been analysed. Furthermore, the fixation strength has been analysed by simulating a pull-out test prior to and after fatigue testing. All ceramic cups produced much larger amounts of cement damage during fatigue testing than any PE cup, caused by stress concentrations in the cement that were attributable to the high stiffness of the ceramic. Even a completely smooth ceramic cup produced more damage than a sharp-grooved PE cup. Owing to the excessive cement cracking, the fixation strength of the ceramic cups dropped after fatigue loading. It is concluded that cemented ceramic cups have an increased risk of long-term mechanical failure by comparison with PE cups, and that a ceramic cup design that combines sufficient fixation strength with low cement failure may be difficult to achieve.  相似文献   

4.
The most common cause of failure of a total hip replacement is aseptic loosening of an implant. In a number of cases, the cement-bone interface of at least one component is not compromised. In cases of aseptic cup loosening, removal of a well-fixed femoral stem may be undertaken to facilitate exposure of the acetabulum for cup revision, and the surgeon may choose to leave the functional cement-bone interfaces in the femur undisturbed. After cup revision, new cement is pressurized within the old cement mantle and a stem is cemented into this 'old-new cement' composite. Retaining the old cement mantle is an attractive option as it reduces the duration of surgery, minimizes bleeding, and preserves the bone stock. Excellent results have been shown with this technique of 'in-cement femoral revision' using a double-tapered polished stem. While considerable literature is available on the short- and long-term properties of PMMA bone cement, very little is known about the mechanical properties of old-new composite cement specimens where the old cement is more than a few days old. This paper tests the properties of such old-new composite specimens where the 'old' cement is aged between 3.3 and 17.7 years, better reflecting clinical situations.  相似文献   

5.
Adequate cement pressurization during stem insertion improves the interdigitation of cement into bone. This increases the strength of the cement-bone interface, thus contributing to the reduction of the incidence of aseptic loosening, the commonest cause of revision surgery. This in-vitro study compared the cement pressurization achieved during insertion of four different stems of equivalent sizes: the Elite Plus (DePuy, UK), C-Stem (DePuy, UK), Exeter (Stryker, USA), and CPS-Plus (Plus Orthopedics, Switzerland). The maximum pressures attained at the time of stem insertion were recorded at proximal, mid and distal stem levels. The Elite Plus generated significantly higher distal pressures than the other stems. The CPS-Plus generated significantly greater proximal cement pressures than the Elite Plus, C-Stem, and Exeter prostheses. The triple taper of the C-Stem increased the cement pressurization medial to the stem. The stem shape and the presence or absence of a proximal stem centralizer affect cement pressurization. The presence of a proximal stem centralizer, a large stem volume, and a lateral-medial taper are all factors associated with increased cement pressurization during stem insertion.  相似文献   

6.
Following on from previous work reported in this journal, a practical system has been developed for in situ fibre reinforcement of bone cement in the hip joint prosthesis. A fibre preform is inserted during the operation, surrounding the metal stem of the prosthesis, forming a composite with the cement. Tests performed on full-scale models of the joint show improvements in fatigue life by more than an order of magnitude when a preform of metal fibres is used; this significantly delays the onset of cement cracking and stem loosening. Initial results reported previously suggest that other fibre materials such as carbon may give even greater improvements. Clinical trials have begun, using a form of the metal mesh.  相似文献   

7.
Barium sulphate is added to polymethylmethacrylate (PMMA) bone cement as a radiopacifier. Gentamicin is an antibiotic added to bone cement to treat or prevent infection in arthroplasty. This study investigated the combined effect of barium sulphate and gentamicin sulphate on the fatigue strength of PMMA bone cement. Three different formulations were studied: pure PMMA, PMMA with barium sulphate added and PMMA with barium sulphate and gentamicin sulphate added. Before testing all specimens were stored in water at 37 degrees C for at least 15 days to season the PMMA and to elute the antibiotic. Fatigue tests were performed following a previously validated procedure. The slope part of the W?hler diagram was obtained and a rough endurance limit was estimated for all three formulations. The experimental data showed that the addition of barium sulphate to PMMA bone cement affected the fatigue strength of the material, whereas addition of gentamicin sulphate to the radiopaque PMMA had no effect on the fatigue properties of the bone cement. While PMMA with barium sulphate added was confirmed to have a reduced fatigue strength when compared with plain PMMA, no detrimental effect was found for the addition of gentamicin sulphate to radiopaque PMMA.  相似文献   

8.
Mechanical interlock obtained by penetration of bone cement into cancellous bone is critical to the success of cemented total hip replacement (THR). Although acetabular component loosening is an important mode of THR failure, the properties of acetabular cancellous bone relevant to cement penetration are not well characterized. Bone biopsies (9 mm diameter, 10 mm long) were taken from the articular surfaces of the acetabulum and femoral head during total hip replacement. After mechanical and chemical defatting the two groups of bone specimens were characterized using flow measurement, mechanical testing and finally serial sectioning and three-dimensional computer reconstruction. The mean permeabilities of the acetabular group (1.064 x 10(-10) m2) and femoral group (1.155 x 10(-10) m2) were calculated from the flow measurements, which used saline solution and a static pressure of 9.8 kPa. The mean Young's modulus, measured non-destructively, was 47.4 MPa for the femoral group and 116.4 MPa for the acetabular group. Three-dimensional computer reconstruction of the specimens showed no significant differences in connectivity and porosity between the groups. Results obtained using femoral head cancellous bone to investigate bone cement penetration and fixation are directly relevant to fixation in the acetabulum.  相似文献   

9.
During the fatigue process of bone, cracks generally initiate from the inherent defects existing in the bone. The fatigue lives of bone specimens at different stress levels as well as at different stress ratios R were evaluated using a computer simulation in which the crack propagation behaviour initiated from the inherent defects in the bone are herein considered. The S-N curves as well as the distributions of fatigue lives obtained by the simulations accurately conform with the experimental results. With the strain threshold epsilon(max) representing fatigue failure of the bone specimen, the values of 1500 microepsilon for R = -1, 2500 microepsilon for R = 0.1 and 4000 microepsilon for R = 10 were extrapolated from the simulations. These values conform with experimental values reported in the literature. Such conformity indicates that the strain threshold for fatigue failure is associated with the threshold value for crack propagation.  相似文献   

10.
In this work three iodine-containing monomers were proposed as new radiopaque agents for acrylic bone cements. In previous studies the addition of iodine-containing methacrylate monomers provided a statistically significant increase in tensile stress, fracture toughness and ductility, with respect to the barium sulphate (BaSO4)-containing cement. However, since fatigue resistance is one of the main properties required to ensure a good long-term performance of permanent prostheses, it is important to compare the fatigue properties of these new bone cement formulations with the radiolucent and BaSO4-containing bone cements. Because the acrylic cements have initial cracks, fatigue crack propagation studies were performed. It can be observed that these acrylic cements followed the Paris-Erdogan model. The results showed that the addition of some organic radiopacifiers (DISMA, TIBMA) increased the fatigue crack propagation resistance as compared to the radiolucent cement, being similar to the BaSO4-containing cement. The radiolucent cement showed a low crack propagation resistance.  相似文献   

11.
R.B. Waterhouse  M. Lamb 《Wear》1980,60(2):357-368
Debonding of bone cement from the stem of the femoral component of a hip prosthesis can result in local tangential oscillatory movement, i.e. fretting, between the two contacting materials as the limb is moved. Patches where such rubbing has occurred are frequently seen on removed implants. Fretting fatigue experiments have been carried out in Hanks solution on austenitic stainless steel and Ti-6Al-4V (IMI 318) with bridges of bone cement clamped to the specimens. Fretting appears to have little effect on the fatigue life of either material but the scanning electron microscope reveals the formation of thick oxide layers which subsequently give rise to loose debris particles by a process of delamination. Further experiments carried out in Hanks solution in an electrolytic cell have shown that there are potential changes when a bone cement rider is fretted against a stainless steel or titanium alloy plate although the change in potential is only one tenth that obtained with a metal-on-metal contact. Fretting by bone cement appears to be producing damage to the metal surfaces which manifests itself as mild wear rather than a diminution in fatigue strength.  相似文献   

12.
The objective of this study was to measure the medullary pressures generated during bone cement injection, pressurization and femoral prosthesis insertion. The measurements were recorded throughout the length of an in vitro femoral model while implanting a series of prosthetic hip stems using different pressurization techniques. The prostheses used were a Charnley 40 flanged stem (Johnson & Johnson DePuy International Limited), an Exeter No. 3 stem (Stryker Howmedica Osteonics, Howmedica International Limited), and a customized femoral component (Johnson & Johnson DePuy International Limited). The following parameters were derived from the pressure data recorded: peak pressure, decay pressure and duration above optimum pressure of 76 kPa to predict adequate penetration. The custom and Exeter stems generated cement pressures throughout the length of the cavity model that were predicted to achieve adequate bone cement interdigitation into cancellous bone. For all the conditions investigated in this study, when using the Charnley femoral component, an adequate level of cement pressurization was generated in the medial-distal portion of the femoral cavity. It is postulated that this could result in reduced integration of the cement mantle with bone and less effective transmission of functional loads applied during a patient's normal activity, postoperatively.  相似文献   

13.
There has been recent renewed interest in proximal femur epiphyseal replacement as an alternative to conventional total hip replacement. In many branches of engineering, risk analysis has proved to be an efficient tool for avoiding premature failures of innovative devices. An extensive risk analysis procedure has been developed for epiphyseal hip prostheses and the predictions of this method have been compared to the known clinical outcomes of a well-established contemporary design, namely hip resurfacing devices. Clinical scenarios leading to revision (i.e. loosening, neck fracture and failure of the prosthetic component) were associated with potential failure modes (i.e. overload, fatigue, wear, fibrotic tissue differentiation and bone remodelling). Driving parameters of the corresponding failure mode were identified together with their safe thresholds. For each failure mode, a failure criterion was identified and studied under the most relevant physiological loading conditions. All failure modes were investigated with the most suitable investigation tool, either numerical or experimental. Results showed a low risk for each failure scenario either in the immediate postoperative period or in the long term. These findings are in agreement with those reported by the majority of clinical studies for correctly implanted devices. Although further work is needed to confirm the predictions of this method, it was concluded that the proposed risk analysis procedure has the potential to increase the efficacy of preclinical validation protocols for new epiphyseal replacement devices.  相似文献   

14.
Interfacial shear strength between poly(methyl methacrylate) (PMMA) bone cement and cancellous bone was measured in bone samples from human proximal femora. Samples were prepared with fresh cement-bone, fresh cement inside a mantle of existing cement and with fresh cement-revised bone surfaces. Push-out tests to measure shear strength caused failure only at bone-cement interfaces; revised bone interfaces were 30 per cent weaker (P < 0.02) than primary interfaces. The clinical relevance is that revision of cemented joint arthroplasties may necessitate removal of components with sound cement-bone fixation. The practice of removing all traces of PMMA cement may not yield the optimal fixation; adhesion of fresh cement to freshly prepared surfaces of the existing cement might also be considered where circumstances are favourable.  相似文献   

15.
Fatigue damage in the cement mantle surrounding hip stems has been studied in the past. However, so far no quantitative method has been validated for assessing ex-vivo damage and for predicting the in-vitro risk of cement fracture. This work presents a method for measuring cement damage; the cement mantle was sliced and sections were inspected with dye penetrants and an optical microscope. Cracks were counted, measured, and classified by type in each region of the cement mantle. Statistical indicators (in total and per unit volume of cement) were proposed that allow quantitative comparison. The method was first validated on two implant types with known clinical success rate, which were tested in vitro using a physiological loading profile (described in Part 1 of this work). The most relevant indicators were able to detect statistical differences between the two designs. Retrieved cement mantles (the same design as one of the in-vitro stems) from revision surgery were also processed with the same inspection method. Excellent qualitative and quantitative agreement was found between the in-vitro generated fatigue damage and the cracking pattern found in the ex-vivo retrieved cement mantles. This demonstrated the effectiveness of the cement inspection protocol and provided a further validation to the in-vitro testing method.  相似文献   

16.
Cemented fixation of hip replacements is the elective choice of many orthopaedic surgeons. The cement is an acrylic polymer which grouts the prostheses into the medullary cavity of the femur. Cement pressure is accepted as a significant parameter in determining the strength of cement/bone interfaces and hence preventing loosening of the prostheses. The aim of this work was to allow optimal design of the intramedullary stem of a hip prosthesis through knowledge of the flow characteristics of curing bone cement which can be used to predict pressures achieved during insertion of the femoral stem. The viscosity of the cement is a vital property determining the cement flow and hence cement interdigitation into bone. The apparent viscosities, nu(a), of three commercial bone cements were determined with respect to time by extrusion of the curing cement through a parallel die of known geometry under selected pressures. Theoretical models were developed and implemented in a computer program to describe cement flow in three models each of increasing complexity: (a) a simple parallel cylinder, (b) a tapered conical mandrel and (c) an actual femoral prosthesis, the latter models being complicated by extensional effects as annular areas increase. Predicted pressures were close to those measured experimentally, maximum pressures being in the range 10-160 kPa which may be compared with a threshold of 76 kPa proposed for effective interdigitation with cancellous bone. The theoretical model allows the prosthesis/bone geometry of an individual patient to be evaluated in terms of probable pressure distributions in the medullary cavity during cemented fixation and can guide stem design with reference to preparation of the medullary canal. It is proposed that these models may assist retrospective studies of failed components and contribute to implant selection, or to making informed selection from options in custom hip prosthesis designs to achieve optimum cement pressurization.  相似文献   

17.
Success of total knee replacement (TKR) depends on the prosthetic design. Aseptic loosening of the femoral component is a significant failure mode that has received little attention. Despite the clinical relevance of failures, no protocol is available to test long-term implant-bone fixation of TKR in vitro. The scope of this work was to develop and validate a protocol to assess pre-clinically the fixation of TKR femoral components. An in vitro protocol was designed to apply a simplified but relevant loading profile using a 6-degrees-of-freedom knee simulator for 1,000000 cycles. Implant-bone inducible micromotions and permanent migrations were measured at three locations throughout the test. After test completion, fatigue damage in the cement was quantified. The developed protocol was successfully applied to a commercial TKR. Additional tests were performed to exclude artefacts due to swelling or creep of the composite femur models. The components migrated distally; they tilted towards valgus in the frontal plane and in extension in the sagittal plane. The migration patterns were consistent with clinical roentgen-stereophotogrammetric recordings with TKR. Additional indicators were proposed that could quantify the tendency to loosen/stabilize. The type and amount of damage found in the cement, as well as the migration patterns, were consistent with clinical experience with the specific TKR investigated. The proposed pre-clinical test yielded repeatable results, which were consistent with the clinical literature. Therefore, its relevance and reliability was proved.  相似文献   

18.
Surface replacement of the metacarpophalangeal joint would provide many benefits over current conservative treatment or the use of hinged spacers in excision arthroplasty. One of the main problems in surface replacement is securing adequate fixation of the prosthesis, especially if cement is not to be used. The direction and size of the forces that cause loosening have been described and a series of experiments in cadaveric bone have been used to elucidate the best shape of the component and stem to resist these forces. A 5 mm square section stem of 30 mm length gave the best overall result when combined with a flat on the palmar aspect of the inner bearing surface.  相似文献   

19.
The purpose of this investigation was to determine the specific fracture mechanics response of cracks that initiate at the stem-cement interface and propagate into the cement mantle. Two-dimensional finite element models of idealized stem-cement-bone cross-sections from the proximal femur were developed for this study. Two general stem types were considered; Rectangular shape and Charnley type stem designs. The FE results showed that the highest principal stress in the cement mantle for each case occurred in the upper left and lower right regions adjacent to the stem-cement interface. There was also a general decrease in maximum tensile stress with increasing cement mantle thickness for both Rectangular and Charnley-type stem designs. The cement thickness is found to be one of the important fatigue failure parameters which affect the longevity of cemented femoral components, in which the thinner cement was significantly associated with early mechanical failure for shot-time period.  相似文献   

20.
针对电热致动器在交流电作用下承受交变温度载荷而发生热疲劳失效的现象,分析热疲劳失效机理。建立电热致动器的瞬态温度分析模型和力学模型,实测致动位移,实测位移与理论计算、有限元仿真结果一致。温度和应力计算表明,结构形式和施加的电压直接影响致动器的温度分布和应力大小,因最大应力小于屈服强度极限而不会发生应力引起的疲劳失效。测试交流电作用下致动位移和循环次数的关系,试验结果和理论计算表明,温度低于脆性-韧性转换温度,电热致动器不发生热疲劳失效,否则在长期循环后会发生热疲劳失效。300~600℃的温度对电热致动器的工作最有利,在此温度范围内能够精确稳定地提供数千万次的致动循环。根据失效现象,分析热疲劳失效机理,得出高温变形是引发热疲劳失效的直接原因,交流电压的幅值和频率对热疲劳的作用都能统一到温度上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号