首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of selective D1 or D2 dopamine receptor agonists and the indirect dopamine agonist cocaine on hippocampal acetylcholine release in mice of the C57BL/6 and DBA/2 inbred strains were investigated using intracerebral microdialysis. The D1 SKF 38393 (10, 20, 30 mg/kg, i.p.), the D2 agonist LY 171555 (0.5, 1, 2 mg/kg, i.p.) and cocaine (5, 10, 15 mg/kg, i.p.) all increased, dose-dependently, acetylcholine release in the hippocampus of C57BL/6 mice. Both the D1 agonist and cocaine did not produce any significant effect in DBA/2 mice. In the latter strain, however, LY 171555 produced a decrease in acetylcholine release that was evident after 60 min from injection of the doses of 0.5 and 1 mg/kg, but not at the dose of 2 mg/kg. The effects observed in C57BL/6 mice as well as those produced by low doses of LY 171555 in the DBA/2 strain were consistent with previous results obtained in rats. The present results indicate major strain-dependent differences in the effects of dopamine agonists on hippocampal acetylcholine release in mice. Moreover, they suggest a complex genotype-related neural organization of dopamine-acetylcholine interactions in the mesolimbic system. Finally, the strain differences in the effects of the dopamine agonists on hippocampal acetylcholine release parallel previously reported strain differences in the effects of these substances on memory consolidation.  相似文献   

2.
The purpose of this study was to examine the motor effects of (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), an agonist at metabotropic glutamate receptors, its interaction with dizocilpine (MK-801), a NMDA receptor antagonist, and with D,L-amphetamine, an indirect dopamine receptor agonist. 1S,3R-ACPD (20, 30, 40, 80 micrograms) evoked prominent locomotor and exploratory deficits in an open-field hole-board test and a moderate akinesia and rigidity in a catalepsy test (30, 40, 80 micrograms). MK-801 (0.08, 0.16, 0.32 mg/kg i.p.) as well as D,L-amphetamine (1.0, 2.0, 3.0 mg/kg i.p.) potently reversed 1S,3R-ACPD-induced (80 micrograms) catalepsy. MK-801 and D,L-amphetamine, administered alone, induced motor stimulation. 1S,3R-ACPD (80 micrograms) reversed the effects of the two lower doses of MK-801. 1S,3R-ACPD reversed D,L-amphetamine-induced motor stimulation to a minor extent than that of MK-801. Thus motor deficits induced by 1S,3R-ACPD were reversed by both, NMDA receptor blockade and dopamine receptor activation. 1S,3R-ACPD reversed motor stimulation, induced by NMDA receptor blockade and, however less pronounced, that by dopamine receptor activation.  相似文献   

3.
Caffeine (10-40 mg/kg, p.o.) enhanced locomotor activity (LA). Administration of GABA antagonist, bicuculline (0.5-1.0 mg/kg, i.p.), potentiated this caffeine-induced increase of LA, as well as LA of control rats. Treatment with the GABA agonist, muscimol (0.25-1 mg/kg, i.p.) or dopaminergic antagonist, haloperidol (0.25-1 mg/kg, i.p.) or muscarinic receptor blocker, atropine (3.75-5 mg/kg, i.p.), or inhibitor of acetylcholine esterase physostigmine (0.05-0.30 mg/kg, i.p.) or nicotine (0.5-1.5 mg/kg, i.p.) an nicotinic receptor agonist all decreased the LA of both caffeine-treated and control rats. Haloperidol-induced reduction in caffeine-induced increase in LA was found to be withdrawn with higher dose of caffeine. The dopamine agonist L-Dopa (75-150 mg/kg, p.o.) along with carbidopa (10 mg/kg, p.o.) increased the LA in control rats and potentiated the LA of caffeine treated rats. The haloperidol attenuated the bicuculline-induced increase in LA and atropine or physostigmine attenuated the bicuculline or L-Dopa + carbidopa-induced increase in LA in both caffeine treated and control rats when those drugs were administered concomitantly with bicuculline or L-Dopa+carbidopa. These results suggest that (a) the GABAergic system has direct role in the regulation of LA, and (b) caffeine potentiates LA by antagonism of the adenosine receptor and activation of the dopaminergic system which, in turn, reduces GABAergic activity through the reduction of cholinergic system.  相似文献   

4.
Male Slc:Wistar, Std:Wistar, and Slc:F344/N rats had good acquisition of the conditioned avoidance response (CAR), while that of the male Slc:Wistar/ST, Jcl:Wistar, and Crj:Wistar rats was bad. Reserpine-induced impairment (RII) in CAR was observed 2-72 h after administration of dopaminergic (DAergic) agents in male Slc:Wistar rats. Amitriptyline (5-80 mg/kg, P.O.), imipramine, desipramine, cis-dosulepine, and trans-dosulepine at dose of 40 mg/kg, P.O. showed no antagonism against RII in CAR 20-23 h after reserpine injection (1 mg/kg, S.C.). However, the atypical antidepressive agents sibutramine (5-10 mg/kg, P.O.), bupropion (40 mg/kg, P.O.), and nomifensine (10-40 mg/kg, P.O.) exhibited antagonism against RII in CAR. The calcium channel antagonists flunarizine, nimodipine, and KP-840 at dose of 10 and 100 mg/kg, P.O., the cerebral improving agent indeloxazine (20-80 mg/kg, P.O.), the anticholinergic agent atropine (5-40 mg/kg, P.O.), 5-hydroxy-L-tryptophan (5-HTP) (40 mg/kg, I.P.), a precursor of 5-hydroxytryptamine (5-HT), and (+/-)-threo-dihydroxyphenylserine [(+/-)-threo-DOPS] (20-200 mg/kg P.O.), a norepinephrine (NE) precursor, showed no antagonism against RII in CAR. The DAergic agents methamphetamine (5 mg/kg, P.O.) and amantadine (50-250 mg/kg, P.O.), L-DOPA (200 mg/kg, P.O.), and the DAergic D1/D2 receptor agonist apomorphine (0.1-1 mg/kg, S.C.) showed marked antagonism against RII in CAR. Although the DAergic D1-receptor agonist KF-38393 (0.3-30 mg/kg, I.P.) and the DAergic D2-receptor agonist quinpirole (0.3-10 mg/kg, I.P.) induced only a weak recovery of RII in CAR when they were administered alone, in contrast to a potent synergistic recovery of RII in CAR, which was observed when SKF-38393 (1 mg/kg, I.P.) and quinpirole (1 mg/kg, I.P.) were administered together. These results suggest that the DAergic nervous system rather than the adrenergic or 5-HT nervous system is involved in RII in CAR, and that both the DAergic D1- and D2-mediated nervous systems play important roles in this process.  相似文献   

5.
Previously established dose-response curves indicated that modafinil 20-40 mg/kg i.p. elicited in mice an obvious stimulation of locomotor activity roughly similar to that induced by (+)amphetamine 2-4 mg/kg. The effects of various agents modifying dopamine transmission were compared on the locomotor response to both drugs. The preferential D2 dopamine receptor antagonist haloperidol 37.5-150 micrograms/kg i.p. suppressed the stimulant effect of (+)amphetamine in a dose dependent manner, but not that of modafinil. The D1 dopamine receptor antagonist SCH 23390 (7.5-30 micrograms/kg s.c.) reversed the (+)amphetamine but not the modafinil induced hyperactivity. The tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (200 mg/kg) suppressed the hyperactivity induced by 4 mg/kg dexamphetamine but not that induced by 20 mg/kg modafinil. Associating L-DOPA 150 mg/kg and benserazide 37.5 mg/kg with (+)amphetamine 2 mg/kg resulted in stereotyped climbing behavior, that was not observed with modafinil 10-80 mg/kg. The profound akinesia induced by reserpine (4 mg/kg s.c.; 5 h before testing) was reversed by (+)amphetamine 2 mg/kg but not by modafinil 40 mg/kg. Finally, on synaptosomes prepared from mouse striata preloaded with [3H]dopamine, modafinil 10(-5) M did not increase the spontaneous [3H]dopamine release whereas (+)amphetamine, at the same concentration, doubled it. From all these differences between the two drugs, it is concluded that the mechanism underlying the modafinil induced stimulant locomotor effect differs completely from that of (+)amphetamine.  相似文献   

6.
Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 0.5 mg/animal i.v. once or twice) to common marmosets induced persistent parkinsonian motor deficits. The postsynaptic dopamine D2 receptor agonist properties of talipexole (B-HT 920, 2-amino-6-allyl-5,6,7,8-tetrahydro-4H-thiazolo[4,5-d]-azepine), which is believed to be a dopamine autoreceptor agonist, were examined using normal and MPTP-treated marmosets and were compared to these properties of bromocriptine, a selective dopamine D2 receptor agonist. Talipexole (20-160 micrograms/kg i.p.) dose dependently increased motor activity and reversed the akinesia and incoordination of movement in MPTP-treated marmosets. In normal marmosets, higher doses of talipexole (80-160 micrograms/kg i.p.) produced a dose-dependent increase in motor activity, while the lowest dose (20 micrograms/kg i.p.) depressed this activity. These data for talipexole were very similar to those for bromocriptine. Talipexole had, however, several properties different from those of bromocriptine; it had a rapid onset of antiparkinsonian activity compared to bromocriptine; it had more than 25 times as much activity potency as bromocriptine; a dose of talipexole (80 micrograms/kg i.p.) sufficient to produce the activity did not induce emesis as strongly as an insufficient dose of bromocriptine (0.5 mg/kg i.p.). These results suggest that talipexole has postsynaptic dopamine D2 receptor agonist properties and that these properties of talipexole may be favorable in the treatment of Parkinson's disease.  相似文献   

7.
While self-administration and place conditioning studies have shown that dopamine D2-like receptor agonists produce reward-related learning, the effects of dopamine D1-like receptor agonists remain equivocal. The present study tested three dopamine D1-like receptor agonists for their ability to induce a place preference. Like control rats treated with amphetamine (2.0 mg/kg i.p.), rats treated with SKF 82958 (+/- -6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1-phenyl-1H- 3-benzazepine hydrobromide; 0.05 but not 0.01, 0.025, 0.075, or 0.10 mg/kg s.c. and/or i.p.) during conditioning showed a significant increase in the amount of time spent on the drug-paired side during the drug free test. Neither SKF 81297 (+/- -6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide; 0.25, 0.50, 1.0, 2.0, and 4.0 mg/kg i.p.) nor SKF 77434 (+/- -7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride; 0.20, 1.0, 5.0, and 10.0 mg/kg i.p.) produced place conditioning. Significant increases in locomotion were seen at some doses of all drugs. Results show for the first time that systemic administration of a dopamine D1-like receptor agonist produces a place preference and are consistent with previous findings showing that dopamine D1-like receptor activation produces reward-related learning.  相似文献   

8.
The effects of 10 antiallergic drugs (astemizole, azelastine, ebastine, emedastine, epinastine, ketotifen, oxatomide, terfenadine, pemirolast and tranilast) on neuronal dopamine uptake were examined. Some drugs examined showed a concentration-dependent inhibition of [3H]dopamine uptake into synaptosomal preparations of the rat striatum. The inhibition constant (Ki) values were 231-876 nM for ebastine, terfenadine, oxatomide and astemizole. The specific binding of [3H] (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) (GBR12935) to the rat striatal membranes was also inhibited by these antiallergic drugs. There was a good correlation between the degrees of inhibition of [3H]dopamine uptake and [3H]GBR12935 binding. Then, the behavioral excitement induced by L-DOPA (100 mg/kg, s.c.) plus pargyline hydrochloride (80 mg/kg, i.p.) in mice was significantly enhanced by i.p. treatment with ebastine (10 mg/kg) and astemizole (5 mg/kg). These results suggest that the neuronal dopamine uptake is inhibited by some antiallergic drugs, especially ebastine.  相似文献   

9.
1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test. 2. Imipramine (10 and 30 mg kg(-1), i.p.) and amitriptyline (5 and 15 mg kg(-1), i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-alpha-methylhistamine, at a dose (10 mg kg(-1), i.p.) which did not modify the cumulative time of immobility. 3. The histamine H3 receptor antagonist, thioperamide (2-20 mg kg(-1), s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg(-1), which was completely prevented by (R)-alpha-methylhistamine. 4. The histamine-N-methyltransferase inhibitor, metoprine (2-20 mg kg(-1), s.c.), was effective with an ED50 of 4.02 (2.71-5.96) mg kg(-1); its effect was prevented by (R)-alpha-methylhistamine. 5. The histamine precursor, L-histidine (100-1000 mg kg(-1), i.p.), dose-dependently decreased the time of immobility [ED30 587 (499-712) mg kg(-1)]. The effect of 500 mg kg(-1) L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-alpha-fluoromethylhistidine (50 mg kg(-1), i.p.), administered 15 h before. 6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3-6.5 microg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1-1 microg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53-8.48) and 1.34 (0.084-21.5) microg per mouse, respectively]. 7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test. 8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.  相似文献   

10.
The aporphine alkaloids boldine and glaucine have been reported to show "neuroleptic-like" actions in mice, suggesting that they may act as dopamine antagonists. We have found that in vitro boldine displaces specific striatal [3H]-SCH 23390 binding with IC50 = 0.4 microM and [3H]-raclopride binding with IC50 = 0.5 microM, while the affinities of glaucine at the same sites are an order of magnitude lower. In vivo, however, 40 mg/kg boldine (i.p.) did not modify specific striatal [3H]-raclopride binding and only decreased [3H]-SCH 23390 binding by 25%. On the other hand, 40 mg/kg glaucine (i.p.) displaced both radioligands by about 50%. Behaviors (climbing, sniffing, grooming) elicited in mice by apomorphine (0.75 mg/kg s.c.) were not modified by boldine at doses up to 40 mg/kg (i.p.) but were almost completely abolished by 40 mg/kg glaucine (i.p.). In the apomorphine-induced (0.1 mg/kg s.c.) rat yawning and penile erection model, boldine and glaucine appeared to be similarly effective, inhibiting both behaviors by more than 50% at 40 mg/kg (i.p.). Boldine and glaucine, injected i.p. at doses up to 40 mg/kg, were poor modifiers of dopamine metabolism in mouse and rat striatum. These data suggest that boldine does not display effective central dopaminergic antagonist activities in vivo in spite of its good binding affinity at D1- and D2-like receptors, and that glaucine, although less effective in vitro, does appear to exhibit some antidopaminergic properties in vivo.  相似文献   

11.
Effect of 3, 4-dihydroxyphenylserine (DOPS), a norepinephrine precurosr, on harmaline tremor was investigated in mice to elucidate the role of norepinephrine in the genesis of tremor. 1) Spontaneous motor activity was inhibited by L-threo-DOPS (200 mg/kg i.p.). 2) Tremor induced by harmaline (5 and 7 mg/kg i.p.) was enhanced by alpha-methyl-p-tyrosone (200 mg/kg i.p.). 3) The development and duration of tremor induced by harmaline (10 mg/kg i.p.) were inhibited significantly in a dose dependent manner by L-threo-DOPS (50, 70, 100, 150 and 200 mg/kg i.p.), but neither by D-threo-DOPS (200 mg/kg i.p.) nor DL-erythro-DOPS (200 mg/kg i.p.). 4) L-threo-DOPS (200 mg/kg i.-.) had no effect on the development of tremor induced by tremorine (5 and 10 mg/kg i.p.), while lacrimation and diarrhea caused by tremorine was markedly inhibited. 5) Administration of harmaline (10 mg/kg i.p.) produced an increase in brain 5-hydroxytryptamine content but not in that of norepinephrine. Administration of L-threo-DOPS (100 mg/kg i.p.) increased the norepinephrine content but not the 5-hydroxytryptamine content in the brain. Inhibition of harmaline tremor induced by L-threo-DOPS is attributed to the L-norepinephrine converted from L-threo-DOPS and the involvement of a noradrenergic mechanism in harmaline tremor has to be considered.  相似文献   

12.
Putative modulatory effects of L-3,4-dihydroxyphenylalanine (L-DOPA) on D2 dopamine receptor function in the striatum of anaesthetised rats were investigated using both in vivo microdialysis and positron emission tomography (PET) with carbon-11 labelled raclopride as a selective D2 receptor ligand. A single dose of L-DOPA (20 or 100mg/kg i.p.) resulted in an increase in [11C]raclopride binding potential which was also observed in the presence of the central aromatic decarboxylase inhibitor NSD 1015, confirming that the effect was independent of dopamine. This L-DOPA evoked D2 receptor sensitisation was abolished by a prior, long-term administration of L-DOPA in drinking water (5 weeks, 170mg/kg/day). In the course of acute L-DOPA treatment (20mg/kg), extracellular GABA levels were reduced by approximately 20% in the globus pallidus. It is likely that L-DOPA sensitising effect on striatal D2 receptors, as confirmed by PET, may implicate striato-pallidal neurones, hence a reduced GABA-ergic output in the projection area. Since the L-DOPA evoked striatal D2 receptor supersensitivity habituates during long-term treatment, the effects reported here may contribute to the fluctuations observed during chronic L-DOPA therapy in Parkinson's disease.  相似文献   

13.
Cataleptogenic effects of haloperidol (1 mg/kg i.p.) in rats was antagonized by caffeine and theophylline (10-50 mg/kg i.p.), and by selective adenosine A2 receptor antagonist (3,7-dimethyl-1-propargylxanthine) (3 and 6 mg/kg i.p.). Selective A1-adenosine receptor antagonist (8-cyclopentyltheophylline) (1.5 and 3 mg/kg i.p.) was not able to reduce this effect of haloperidol. These results confirm the antagonistic interaction between adenosine A2A and dopamine D2 receptors, and suggest the involvement of adenosine A2 receptors in the mechanisms of catalepsy.  相似文献   

14.
The effects of (R)alpha-methylhistamine and N alpha-methylhistamine on intestinal transit were examined in mice. The passage of a charcoal meal in the gastrointestinal tract was dose dependently inhibited by N alpha-methylhistamine (1-20 mg/kg i.p.), but not by a selective H3 receptor agonist (R)alpha-methyl-histamine (1-50 mg/kg i.p.). The inhibitory effect of N alpha-methylhistamine (20 mg/kg) was attenuated by pretreatment with H1 receptor antagonists (mepyramine 5 mg/kg i.p. or 5 micrograms i.c.v. and triprolidine 5 mg/kg i.p.), but not by cimetidine (10 mg/kg i.p.), zolantidine (5 mg/kg i.p.), a brain-penetrating H2 receptor antagonist, or thioperamide (5 mg/kg i.p.), a selective H3 receptor antagonist. The effect of N alpha-methylhistamine was also attenuated by combined treatment with phentolamine and propranolol (5 and 15 mg/kg s.c., respectively) and by pretreatment with 6-hydroxydopamine (20 mg/kg i.p., 2 days before). N alpha-Methylhistamine markedly decreased histamine turnover in the mouse brain. These findings suggest that intestinal transit is inhibited by N alpha-methylhistamine via stimulation of central H1 but not H3 receptors and that stimulation of the sympathetic system is involved in this effect.  相似文献   

15.
One of the critical mechanisms by which alcohol heightens aggression involves forebrain serotonin (5-HT) systems, possibly via actions on 5-HT1A receptors. The present experiments tested the hypothesis that activating 5-HT1A receptors by selective agonists will block the aggression-heightening effects of ethanol. Initially, the selective antagonist WAY 100635 was used to assess whether or not the changes in aggressive behavior after treatment with 8-OH-DPAT and flesinoxan result from action at the 5-HT1A receptors. Resident male CFW mice engaged in aggressive behavior (i.e. attack bites, sideways threats, tail rattle) during 5-min confrontations with a group-housed intruder male. Quantitative analysis of the behavioral repertoire revealed systematic reductions in all salient elements of aggressive behavior after treatment with 8-OH-DPAT (0.1-0.3 mg/kg, i.p.) or flesinoxan (0.1-1.0 mg/kg, i.p.). The 5-HT1A agonists also reduced motor activities such as walking, rearing and grooming, although to a lesser degree. Pretreatment with the antagonist WAY 100635 (0.1 mg/kg, i.p.) shifted the agonist dose-effect curves for behavioral effects to the right. In a further experiment, oral ethanol (1.0 g/kg, p.o.) increased the frequency of attacks in excess of 2 SD from their mean vehicle level of attacks in 19 out of 76 resident mice. Low doses of 8-OH-DPAT (0.03-0.3 mg/kg) and flesinoxan (0.1, 0.3, 0.6 mg/kg), given before the ethanol treatment, attenuated the alcohol-heightened aggression in a dose-dependent fashion. By contrast, these low 5-HT1A agonist doses affected motor activity in ethanol-treated resident mice to a lesser degree, suggesting behavioral specificity of these anti-aggressive effects. The current results support the hypothesized significant role of 5-HT1A receptors in the aggression-heightening effects of alcohol. If these effects are in fact due to action at somatodendritic 5-HT1A autoreceptors, then the anti-aggressive effects would be associated with decreased 5-HT neurotransmission.  相似文献   

16.
BACKGROUND: A novel gastric pentadecapeptide, BPC 157, has been shown to attenuate different lesions (i.e., gastrointestinal tract, liver, pancreas, somatosensory neurons). This suggests an interaction with the dopamine system. When used alone, BPC 157 does not affect gross behavior or induce stereotypy. METHODS: We first investigated the effect of pentadecapeptide BPC 157 on stereotypy and acoustic startle response in rats, given as either a prophylactic (10 micrograms/kg i.p.) or therapeutic (10 ng/kg i.p.) regimen, with the dopamine indirect agonist amphetamine (10 mg/kg i.p.). RESULTS: There was a marked attenuation of stereotypic behavior and acoustic startle response. When the medication was given at the time of maximum amphetamine-induced excitability, there was a reversal of this behavior. A further focus was on the effect of this pentadecapeptide on increased climbing behavior in mice pretreated with the dopamine antagonist haloperidol (5.0 mg/kg i.p.), and subsequently treated with amphetamine (20 mg/kg i.p. challenge 1, 2, 4, and 10 days after haloperidol pretreatment). This protocol is usually used for the study of behavioral supersensitivity to the amphetamine stimulating effect. CONCLUSIONS: An almost complete reversal was noted when pentadecapeptide was coadministered with haloperidol. Together, these data provide compelling evidence for the interaction of pentadecapeptide BPC 157 with the dopamine system.  相似文献   

17.
Male squirrel monkeys (Saimiri sciureus) were surgically prepared with cranial guide cannulae for acute microdialysis sampling of the putamen nucleus, a dopamine (DA)-rich brain region. On the day of an experiment an animal was placed in a Plexiglas restraining chair and a microdialysis probe was inserted through the guide into the putamen. Perfusates of artificial cerebrospinal fluid were collected every 20 min over several hours and analyzed via HPLC with electrochemical detection. DA D2/ D3 agonist drugs were administered either orally (p.o.) or subcutaneously (s.c.), and changes in levels of DA in the dialysates were measured. All of the drugs tested, i.e., quinpirole (0.5 mg/kg p.o.), talipexole (0.75 mg/kg p.o. or s.c.), and PD 135222 (7 mg/kg p.o.), decreased spontaneous DA overflow by approximately 40-50% during the first 2 h following dosing. In animals that routinely underwent the microdialysis procedure up to 23 times over a 2-year period, there was neither an appreciable change in basal DA overflow nor a significant change in the magnitude of drug response. These data suggest that DA D2/D3 agonists attenuate DA neuronal overflow in the primate brain, similar to effects seen in rodents. Furthermore, these results also demonstrate the utility of repeated intracerebral microdialysis as a tool to monitor dynamic changes in neurochemical activity in monkeys over a prolonged period of time.  相似文献   

18.
To investigate the in vivo functional interaction between phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP) binding sites and sigma receptors, we examined the effects of sigma receptor ligands on stereotyped head-weaving behavior induced by PCP, a putative PCP/sigma receptor ligand, and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclo-hepten-5,10-imin e ((+)-MK-801; dizocilpine), a selective PCP binding site ligand, in rats. PCP (7.5 mg/kg, i.p.)-induced head-weaving behavior was inhibited by both N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine (NE-100; 0.03-1.0 mg/kg, p.o.), a selective sigma1 receptor ligand, and alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperidine butanol (BMY-14802; 3 and 10 mg/kg, p.o.), a prototype sigma receptor ligand, in a dose-dependent manner, whereas NE-100 (0.1-1.0 mg/kg, p.o.) and BMY-14802 (3 and 10 mg/kg, p.o.) did not inhibit dizocilpine (0.25 mg/kg, s.c.)-induced head-weaving behavior. These results suggest that NE-100 and BMY-14802 act via sigma receptors. Dizocilpine-induced head-weaving behavior was potentiated by 1,3-di-o-tolyl-guanidine (DTG; 0.03-0.3 microg/kg, i.v.) and (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP; 3 and 6 mg/kg, i.p.), sigma1/sigma2 receptor ligands, as well as by (+)-N-allyl-normetazocine ((+)-SKF-10,047: 8 mg/kg, i.p.), a sigma1 receptor ligand, while DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) did not induce this behavior. Potentiation of dizocilpine-induced head-weaving behavior by DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) was completely blocked by NE-100 (0.1 mg/kg, p.o.) and BMY-14802 (10 mg/kg, p.o.). These results suggest that PCP binding sites and sigma receptors are involved in PCP-induced head weaving behavior, and that sigma1 receptors play an important role in modulation of the head-weaving behavior.  相似文献   

19.
We examined the modulatory effect of serotonergic activities on haloperidol-induced up-regulation of dopamine D2 receptors in rat striatum. Chronic treatment with haloperidol (0.1, 0.5 mg/kg, i.p., 3 weeks) increased the number of dopamine D2 receptors, while no increase was observed with atypical antipsychotic drugs clozapine (10 mg/kg) and ORG 5222 (0.25 mg/kg). Chronic treatment with MK 212, a serotonin (5-HT)2A/2C receptor agonist (2.5 mg/kg), or with citalopram, a 5-HT reuptake inhibitor (10 mg/kg), potentiated the haloperidol (0.1 mg/kg)-induced up-regulation of dopamine D2 receptor, while that with (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist (0.1 mg/kg), had no influence on the dopamine D2 receptor up-regulation. Co-administration of ritanserin (1 mg/kg), a 5-HT2A/2C receptor antagonist, with a low dose of haloperidol (0.1 mg/kg), but not with a high dose of the agent (0.5 mg/kg), attenuated the dopamine D2 receptor up-regulation. Drug occupation of 5-HT2A and dopamine D2 receptors in vivo examined with use of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was 69.8% and 45.1%, respectively, after the acute administration of haloperidol (0.1 mg/kg) plus ritanserin (1 mg/kg). This profile that 5-HT2A receptors were highly occupied compared with dopamine D2 receptors was similar to that of clozapine or ORG 5222. These results suggest that potent 5-HT2A receptor antagonism versus weak dopamine D2 receptor blockade may be involved in the absence of up-regulation of dopamine D2 receptors after chronic treatment with clozapine or ORG 5222.  相似文献   

20.
Serotonin (5-hydroxytryptamine; 5-HT) elicits external carotid vasoconstriction in vagosympathectomized dogs via 5-HT1B/1D receptors and a mechanism unrelated to the 5-HT1, 5-HT2, 5-HT3 and 5-HT4 types. In order to further explore the nature of this novel mechanism, the canine external carotid effects of 2-(2-aminoethyl)-quinoline (D-1997), a novel 5-HT1 receptor agonist, were analyzed and compared with those of 5-HT and sumatriptan. Intracarotid (i.c.) infusions of 5-HT, D-1997 and sumatriptan to vagosympathectomized dogs dose-dependently decreased external carotid conductance, the rank order of agonist potency being 5-HT > sumatriptan > D-1997. The effects to D-1997 were resistant to intravenous (i.v.) pretreatment with 5-HT2 and 5-HT3/5-HT4 receptor antagonists. Remarkably, the effects induced by lower (10-100 microg/min), but not higher (300-1000 microg/min), doses of D-1997 were blocked by high doses of methiothepin (1 and 3 mg/kg, i.v.), as previously shown with 5-HT. In addition, GR-127935 (1-10 microg/kg, i.v.), partially and dose-dependently antagonized D-1997-induced responses. However, the effects of D-1997 remained unaltered after blockade of alpha- and beta-adrenoceptors, muscarinic, nicotinic, histamine and dopamine receptors, or inhibition of 5-HT-uptake or cyclo-oxygenase, depletion of biogenic amines or blockade of Ca2+ channels. These results may support our previous contention that lower doses of 5-HT elicit external carotid vasoconstriction in vagosympathectomized dogs by activation of 5-HT1B/1D receptors, whilst higher doses of 5-HT stimulate a novel vasoconstrictor mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号