首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以天津地区居住建筑为研究对象,通过对用户供暖耗热量的采集和统计,了解了居住建筑在运行过程中的供暖能耗现状,分析了运行能耗过高的原因。结果表明,合理的室内温度控制措施可实现运行节能22%。通过对中德两国居住建筑设计热需求和供暖运行能耗的分析与对比,发现中国居住建筑三步节能标准与德国EnEv2002和EnEv2009节能标准相比,围护结构节能潜力分别可达17%和35%。在同等气候条件下,满足三步节能标准的中国居住建筑供暖运行比德国满足EnEv2002标准的建筑多消耗73.2%的能源。  相似文献   

2.
窗墙比对居住建筑的冷热耗量指标及节能率的影响   总被引:8,自引:0,他引:8  
以高层公寓式居住建筑为对象,利用特征温度法研究了对建筑采取相同改进措施时窗墙面积比对建筑冷热耗量和能耗相对变化率的影响,并分析了当建筑体形系数不同时,窗墙面积比对全年空调与供暖冷热耗量指标以及采取相同节能措施建筑的全年空调与供暖节能量及节能率的影响。  相似文献   

3.
以《典型地区商场建筑非供暖季不同末端空调系统综合能耗分析》一文的计算结果为基础,对6个城市商场建筑3种不同末端空调系统采取节能措施前后的非供暖季综合系统能耗进行了计算分析。结果表明,采取节能措施后多联机和风机盘管空调系统的节能作用明显,空气处理机组的节能作用极为显著。  相似文献   

4.
中国寒冷地区被动式房屋模式初探   总被引:1,自引:0,他引:1  
本文首先通过比较分析中德居住建筑节能设计规范的发展历程,研究了节能措施及其耗热量指标的差异.而后,根据中国国情,提出了一种现阶段适合于中国寒冷地区的"被动式房屋"模式,并选取大连1栋4单元5层居住建筑的实际供暖设计案例进行了分析,表明壁挂式太阳能空气集热模块(WSAC)住宅较节能65%住宅可节约年供暖能耗58%以上,且技术经济分析结果显示,该模式的节能减排效果极为明显,建筑寿命期内可节约供暖运行费用13万元以上.  相似文献   

5.
降低建筑能耗已成为低碳经济时代亟待解决的大事。以既有居住建筑供暖节能减排为目标,以试点城市天津的28家供热站的供热数据为样本,计算既有居住建筑供暖的碳排放量,分析既有建筑供暖的节能潜力,给出依照三步节能标准改造的能效交易思路与建议。  相似文献   

6.
建筑气密性对住宅能耗影响的分析   总被引:1,自引:0,他引:1  
简要介绍了国内外居住建筑气密性的相关标准、研究现状和节能措施,在此基础上综合考虑人体健康需求和节能要求,建立了居住建筑气密性和通风模式的模型,分析了不同气密性条件下不同通风模式不同气候区的供暖空调能耗,提出优化的气密性和通风模式。  相似文献   

7.
为探究我国严寒地区近零能耗建筑在实际运行中的热舒适性和节能性,选取辽宁省沈阳市某近零能耗居住建筑为研究对象,在冬季供暖期间采用环境参数测量与问卷调查同步进行的方式对该建筑的热舒适性进行研究。同时对近十年来严寒地区普通居住建筑的热舒适测试进行了文献调研,得到严寒地区冬季供暖期间普通居住建筑与近零能耗居住建筑的热中性温度、期望温度和80%可接受度的温度范围等热环境指标。另一方面监测了冬季近零能耗居住建筑的各项能耗指标并进行了节能性对比分析。明确了普通居住建筑与近零能耗居住建筑在热舒适与节能性上的差异;得到近零能耗建筑中人热感觉的变化规律;阐述了近零能耗居住建筑冬季运行过程中的优缺点;并从人体热适应的角度出发对近零能耗建筑热环境的设计与营造提供理论参考与建议。  相似文献   

8.
<正>根据北京市建筑节能规划及民用建筑节能管理的要求,北京地区每年都有大量的既有居住建筑进行全面或围护结构的节能改造,相对于新建建筑按照不断提高的节能设计标准进行设计建造可以延缓建筑供暖能耗的增量,既有建筑的节能改造则不但可以改善居住环境的质量,还可以减少建筑供暖的能耗总量,对供暖能耗量的控制和减少有害物质的排放是在做减法,其节能减排的效果更明显和有效。  相似文献   

9.
简要分析了供暖居住建筑的基本特点,归纳总结了供暖居住建筑的节能措施,并提出了在进行新型节能供暖,空调建筑设计的同时,应重视对系统本身的节能型设计和运行管理。  相似文献   

10.
某小区居住建筑于2005年进行了外墙外保温改造。对其节能改造前后的能耗账单进行了比较分析,直接比较的结果表明,改造后的电耗增加。为了确定节能措施的真正节能效果,对其进行了认真详细的分析,采用供暖度日数和空调焓日数分别对供暖季和供冷季的能耗进行了调整,并根据过渡季节的能耗变化对使用情况进行了调整,并对调整后的能耗进行了比较分析,结果表明,对外墙加外保温的节能改造措施具有一定的节能效果,而且还可改善室内的热舒适性。  相似文献   

11.
曹辉 《建筑节能》2009,37(7):18-19
分析了我国北方既有居住建筑采暖能耗现状,提出了既有居住建筑围护结构采暖节能改造以及供热管网系统的改造措施,通过降低居住建筑的能耗从而达到节能的目的。  相似文献   

12.
刘倩  张旭 《建筑科学》2007,23(12):24-26,38
本文在对长江流域气候和住宅建筑能耗特点及嗣护结构保温隔热措施适应性的分析基础上,以上海某节能住宅小区内建筑为例,采用DeST软件对其典型住宅楼进行了能耗模拟,比较了不同围护结构保温隔热方式对采暖、空调及全年总能耗的节能率的影响,最终得到最适用于上海地区的围护结构节能措施,为夏热冬冷地区住宅建筑的节能设计方案提供依据。  相似文献   

13.
《Building and Environment》2005,40(4):563-569
By making comparative research on hourly, daily and monthly energy consumption differences and also on energy conservation rates of heating and cooling when taking the same energy-saving measure in the same building in typical-year meteorological conditions (WDB1) and artificial meteorological conditions (WDB2), we can find from this paper that although the hourly heating and cooling load has great differences when making the same energy efficient measure in the same building under WDB1 and WDB2, the distribution laws of hourly energy efficiency rates (RVRs) of heating and cooling are very similar. It is just the similarity that determines the inevitability of approximation of annual energy conservation rates of heating and cooling. The importance of this paper is that it reveals the common rule of building efficiency. When making the same energy-saving measure on the same type of building in different regions the annual energy consumption and its reduction of the building have a great difference between the regions and the energy conservation rates (RVRs) of the same measures are approximate. After taking some energy-saving measure on the same building in the same place, within the lifetime of the building, however different the local weather conditions over the years are, the energy consumption of different years and the energy reductions of the measure must be different. However, it can be foreseen that the energy conservation rate of any year is approximate after making energy-saving measures on the building. The reason for the above is that although climate changes between years, there is nothing more impractical in artificially modifying meteorological conditions (WDB2), which provides a powerful theoretical basis for every country to lay down design standard for energy efficiency.  相似文献   

14.
张步宏  晋锦国  管中 《山西建筑》2013,(35):201-202
通过对住宅建筑节能规范的学习,列举了影响住宅建筑能耗的主要参数,总结了居住建筑节能的要求,并介绍了常用保温材料及性能,提出了供排水、采暖、电气等专业的节能措施,以实现可持续发展的目标。  相似文献   

15.
《Energy and Buildings》2006,38(6):618-626
A large potential for energy savings exists in the Danish residential building stock due to the fact that 75% of the buildings were constructed before 1979 when the first important demands for energy performance of building were introduced. It is also a fact that many buildings in Denmark face comprehensive renovations in the coming years and in connection with this renovation process energy-saving measures can be implemented relatively inexpensive and cost effective. This opportunity should be used to insure the buildings in the future as far as energy consumption is concerned. This paper gives a short account of the technical energy-saving possibilities that are present in existing dwellings and presents a financial methodology used for assessing energy-saving measures. In order to estimate the total savings potential detailed calculations have been performed in a case with two typical buildings representing the residential building stock and based on these calculations an assessment of the energy-saving potential is performed. A profitable savings potential of energy used for space heating of about 80% is identified over 45 years (until 2050) within the residential building stock if the energy performances are upgraded when buildings are renovated.  相似文献   

16.
通过分析总结已出台75%居住建筑节能标准的同纬度地区的节能规范,在辽宁省现行标准的基础上大量测算阜新地区及新疆等地具有代表性的居住建筑的耗热量指标,并反复推敲各围护结构的限值,综合考虑锅炉效率和室外管网输送效率,最终制定出适用于阜新地区的居住建筑节能75%的相应标准。初步探讨现有节能技术的节能潜力以及如何提升建筑节能应用水平,从而从设计源头降低建筑物的能耗需求,扩大严寒地区建筑节能标准在同纬度地区的应用范围。  相似文献   

17.
以唐山河北1号小区既有居住建筑综合节能改造工程为例,分析了中国寒冷地区既有居住建筑不同改造方案的节能保温效果。通过采用围护结构保温、塑钢中空低辐射(Low-E)镀膜玻璃、供暖系统改造、分户热计量等节能技术后,单位建筑面积的采暖能耗最低为11.9 W/m2,平均采暖能耗13.37 W/m2,3栋示范建筑都可以实现节能65%的节能标准。按单位建筑面积平均节煤量22.57 kg/m2计算,北方采暖地区既有居住建筑节能改造后,每年可节约标准煤约4875万t,减少二氧化碳排放1.24亿t,减少二氧化硫排放6.79×104 t,减少氮氧化物排放43.7×104 t。  相似文献   

18.
目前,城市住宅建筑节能日趋完善,农村住宅则相对欠缺。其中很重要的原因就是适合农村住宅的节能技术的研发及其推广不够。从鲁中地区农村住宅的规划布局构造、耗能情况、围护结构保温技术、住宅新型采暖技术、太阳能的利用及住宅节能的经济性等方面,对农村住宅节能状况进行了分析,指出当前农村节能技术研究存在的问题,对农村住宅建筑节能技术进行探讨和总结。  相似文献   

19.
外墙外保温系统适宜性分析研究   总被引:1,自引:0,他引:1  
采暖地区的既有居住建筑很大部分为砖混结构,建筑围护结构热工性能差,墙体不保温,造成了全年采暖空调能耗年年攀高。而外墙对室内温度影响大,是节能改造的关键之一。文中采用DeST-h软件对兰州市某小区的一栋典型住宅建筑进行能耗模拟,通过比较几组不同构造和厚度的外墙保温体系和未保温墙体的负荷指标,分析了不同外保温体系对建筑负荷的影响,确定该地区最适宜的外保温构造方式。  相似文献   

20.
The purposes of this research are to contrast the energy use characteristics of old residential buildings and new residential buildings in Shanghai, China, to look into influence factors of residential energy consumption, and to further analyze the reasons which result in the differences of energy consumption quantities between high-energy use family group and low-energy use family group. 1610 families in Residential District A and 819 families in Residential District B were chosen to trace their monthly energy consumption data in the whole year of 2006. Buildings in District A were all constructed in the 1980s, while those in District B were built in the 2000s. 300 families in each district were further selected from all above investigated families to do questionnaires in the year of 2007, so as to understand building characteristics, the possession and utilization of space heating and cooling appliances, and energy-saving consciousness. Annual energy consumption of the two kinds of buildings is contrasted and energy consumption quantities of spacing cooling and heating are also calculated. Influencing factors of residential energy consumption are analyzed by Quantification Theory I. Quantification Theory III is used to classify all the families into different categories based on the differences in their energy consumption amounts, and to further find out the reasons leading to the different energy consumption between different groups. Conclusions are as follows: (1) the average annual energy consumption quantity is 23.27 GJ/household for new buildings and 14.40 GJ/household for old buildings. The ratio of space heating and cooling to total annual energy consumption is just 16% and 11.6% for new buildings and old buildings respectively; (2) energy consumption and its variance lie on the integration of many factors, such as the floor area, materials of window frames, the number of family members, operation months of space heaters in winter and air conditioners in summer, and energy-saving actions; (3) all the families in the two districts can be classified into two categories: Household Region M of much energy use, and Household Region N of little energy use. Adopting the aluminum window frames, large floor areas and the large number of family members (above 4 person) are the main reasons leading to more energy use in Household Region M, while the small number of family members (1-2 persons/household) and small floor areas are the main reasons resulting in the less energy use in Household Region N; the long period of space heating, using illumination as little as possible are also the reasons causing the differences in energy consumption quantities between the two categories, but their influences on the samples clustering are smaller than the main reasons above; (4) compared with the energy consumption in some developed countries, the ratio of space heating and cooling to total residential energy use is much smaller in Shanghai. Indoor thermal environment is very poor besides that. With the growth of economy and the improvement of living standard, people will have the higher requirement for good-quality indoor thermal environment, and hence space heaters and coolers will be used much more frequently, so the residential energy consumption in China will still continuously increase rapidly, if few energy-conservation strategies are adopted; (5) considering current little prevalence of energy-saving actions with low efficiency, more effective energy-saving actions should be fully adopted in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号