共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
铝基体上碳纳米管原位均匀合成及其复合材料的性能 总被引:1,自引:0,他引:1
采用负载于铝粉上的镍催化剂,成功地在650℃通过化学气相沉积法在钳基体中原位合成碳纳米管。结构农征表明,所合成的碳纳米管具有较高的石墨化程度和平直的石墨壳层。通过该方法实现铝粉中碳纳米管的弥散分布,其分散效果优于传统机械混合方法。利用所合成的碳纳米管/铝原位复合粉末,采用粉末冶金工艺制备碳纳米管/铝基复合材料。性能测试表明,制备的复合材料的力学性能和尺寸稳定性得到显著提高,其原因在于铝基体中碳纳米管的均匀分散和碳纳米管-铝基体之间良好的界面结合。 相似文献
3.
Carbon nanotubes (CNTs) were synthesized through the catalytic decomposition of a ferrocene-xylene mixture in a horizontal chemical va- por deposition reactor. The deposition rate of CNTs along the axial direction was measured. The morphology of CNTs was observed by scan- ning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the deposition rate of CNTs along the axial direction first increased and later decreased, the position achieving the maximum deposition rate was influenced by the operating conditions. The morphologies of CNTs also changed along the axial direction. 相似文献
4.
采用碳纳米管改善纤维与基体间的界面结合,同时利用碳纳米管自身的优异性能对碳化硅纤维增强碳化硅复合材料(SiCf/SiC)进行二次增强。通过化学气相沉积工艺(CVD)在SiC纤维编织件内原位生长碳纳米管,优化碳纳米管原位生长过程中的碳源流量、反应温度和反应时间等工艺参数,对碳纳米管的原位生长工艺及机理进行系统分析,并结合先驱体浸渍裂解工艺(PIP)制备CNTs-SiCf/SiC复合材料,探讨原位生长碳纳米管的引入对复合材料力学性能的影响。结果表明,优化后的工艺参数如下:反应温度750℃,C2H2、H2和N2流量比1/1/3,C2H2流量100~150 mL/min,反应时间60 min;碳纳米管的引入使SiCf/SiC复合材料的弯曲强度、弯曲模量和断裂韧性分别提高了16.3%、90.4%和106.3%。 相似文献
5.
6.
Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions. 相似文献
7.
G. X. Wang Jane Yao H. K. Liu S. X. Dou J. -H. Ahn 《Metals and Materials International》2006,12(5):413-416
High-purity vertically aligned carbon nanotubes (CNTs) were prepared on a quartz substrate by thermal chemical vapour deposition
(CVD). The as-prepared carbon nanotubes have an outer diameter of 40–60 nm and a length of 70–80 μm. HRTEM observation revealed
that there were compartment structures in the carbon nanotubes. The vertically aligned CNTs exhibit a high reversible lithium
storage capacity of 950 mAh/g in lithium-ion cells. 相似文献
8.
Hao Zhang Yanfang Chen Sung-Soo Kim Yun-Soo Lim 《Metals and Materials International》2008,14(2):269-273
Chemical vapor deposition with xylene as the carbon resource, a nitrate iron solution as the catalyst, and ammonia gas as the reduction gas was used to investigate the different parameters that influence carbon nanotubes. Different concentrations of the ammonia gas and different substrates affect the morphology and properties of carbon nanotubes fabricated using the method involving ammonia gas and a quartz plate. This method yields a large quantity of vertically aligned carbon nanotubes with a typical bamboo-like inner layer structure. In the synthesis of this type of carbon nanotube, the ammonia etches the catalyst surface through the catalyst agglomeration. 相似文献
9.
以碳/碳复合材料为基体,MTS为先驱体原料,采用化学气相沉积法在复合材料表面制备CNT-SiC/SiC复合涂层;研究原位生长的碳纳米管(CNTs)对SiC沉积速度和微观形貌的影响。结果表明:CNTs加快SiC的沉积,涂层的平均质量增加速率提高5%,提高沉积的均匀性,且晶粒更细小;经1 100℃恒温氧化10 h后,单一SiC涂层、CNT-SiC/SiC涂层的质量损失率分别为41.11%和34.32%;经(1 100℃,3 min)(室温,3 min)热循环15次后,单一SiC涂层和CNT-SiC/SiC涂层的质量损失率分别为33.17%和30.25%,部分区域涂层脱落及涂层表面形成的气孔是涂层试样质量损失的主要原因。 相似文献
10.
以脱油沥青(Deoiled Asphalt)为碳源、二茂铁为催化剂,采用化学气相沉积法(CVD)制备碳纤维(CFs),其裂解后的残渣经真空热处理制得含镍碳纳米胶囊(CNCs)。用场发射扫描电镜(FESEM)、高分辨透射电镜(HRTEM)、X射线衍射仪(XRD)和拉曼光谱(Raman)对产物进行表征。结果表明:碳纤维纯度较高,属中空结构,直径主要分布在200~500 nm范围内;含镍碳纳米胶囊为准球形核壳结构,核为金属镍,壳为石墨化碳,大小在5~30 nm范围,晶化程度较高,结构较完善。 相似文献
11.
In this paper, an approach to synthesizing carbon nanotubes ( CNTs ) reinforced A1-Si-Cu brazing powder was studied, which was accomplished by in-situ growth of the CNTs on the Al-Si-Cu powder at a relatively low temperature by plasma enhanced chemical vapor deposition ( PECVD ). The synthesis parameters were optimized. The component of brazing powder was analyzed by X-ray diffraction ( XRD ). The microstracture and dispersity of as-grown CNTs were investigated by scanning electron microscopy (SEM). The graphitization and defects were characterized by Raman spectroscopy. The asgrown CNTs on Al-Si-Cu powder disperse uniformly and have moderate length and density, meanwhile its sp2 structure dominates minor quantity of amorphous carbons and defected carbon structures. 相似文献
12.
Denise Langheinrich Susanne Dörfler Holger Althues Stefan Kaskel Andrés Lasagni 《Surface & coatings technology》2012
Multi-walled carbon nanotube (MWCNT) films are grown by chemical vapor deposition (CVD) on silicon substrates using an alumina buffer and a Fe/Co layer as catalyst with different Fe/Co ratios. For both coatings, a scalable wet-chemical technique is applied. The highest CNT forests (100–125 μm) are obtained with Fe content between 60 and 80 wt.%. After deposition of the films, direct laser interference patterning (DLIP) method is used for fabricating micro patterns of the CNTs, using a frequency tripled Nd:YAG laser emitting 10 ns pulses. Two different approaches for fabricating periodic MWCNT arrays are presented. The first approach is the direct patterning of the CNT layer itself (CNT-DLIP) obtaining well defined line-like structures with 10 μm spatial period. By adjusting the laser fluence (from 150 to 250 mJ cm− 2) and the number of laser pulses (from 1 to 20), the morphology (structure depth and line width) of the fabricated arrays can be varied. Thermal simulations of the CNT ablation process validate the experimental observations. The second approach involves indirect patterning of the CNTs, by fabricating line-like structures on the iron/cobalt catalyst layer (CAT-DLIP). In the last case, moderate energy densities (100 mJ cm− 2) permitted to remove the catalyst layer locally at the interference maxima positions. By altering the number of laser pulses from 1 to 20 the line width can be tuned. The CNT forests are subsequently grown on the patterned catalyst. 相似文献
13.
The etching effect of ammonia (NH3) on the growth of vertically aligned nanotubes/nanofibers (CNTs) was investigated by direct-current plasma enhanced chemical vapor deposition (DC-PECVD). NH3 gas etches Ni catalyst layer to form nanoscale islands while NH3 plasma etches the deposited amorphous carbon. Based on the etching effect of NH3 gas on Ni catalyst, the differences of growing bundles of CNTs and single strand CNTs were discussed; specifically, the amount of optimal NH3 gas etching is different between bundles of CNTs and single strand CNTs. In contrast to the CNT carpet growth, the single strand CNT growth requires shorter etching time (5 min) than large catalytic patterns (10 min) since nano dots already form catalyst islands for CNT growth. Through removing the plasma pretreatment process, the damage from being exposed at high temperature substrate occurring during the plasma generation time is minimized. High resolution transmission electron microscopy (HTEM) shows fishbone structure of CNTs grown by PECVD. 相似文献
14.
H-terminated DLC layers were synthesized on SiO2 substrate by radio frequency (RF) magnetron plasma-enhanced chemical vapor deposition (PECVD) in a conventional reactor using C4H10 as carbon source. As-deposited DLC films were characterized by Raman spectroscopy, scanning electron microscopy (SEM) as well as atomic force microscopy (AFM). The chemical reactivity of the obtained DLC surface was further investigated by exposing the photochemically oxidized DLC surface to a silane reagent. The course of the reaction was followed using water contact angle and X-ray photoelectron spectroscopy. 相似文献
15.
We investigated the effect of in-situ cleaning with ECR (Electron Cyclotron Resonance) hydrogen plasma. This cleaning was
effective in removing oxygen and carbon on the wafer surface because of its high density and low substrate damage and, thus,
high quality epitaxial films were deposited. The contents of the oxygen or carbon species were correlated with the structural
quality of the interface and film. The possible reaction mechanisms for the cleaning of oxygen and carbon species were scrutimized.
The removal of oxygen rather than of carbon, was crucial in obtaining high quality epitaxial films. 相似文献
16.
WEI Xian-wen XU Jing SONG Xiao-jie NI Yong-hong 《中国有色金属学报》2004,14(Z2):236-238
Rare earth fluoride EuF3 and TbF3 were coated on the multi-walled carbon nanotubes (MWNTs) via the intermediate of noncovalent hydrophobic interactions of the MWNTs surface with sodium dodecyl sulfate (SDS).They were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The nanoparticle sizes of metal fluorides and sulfides on MWNTs are less than 20 nm. The photo physical properties of the composites were investigated, which indicated the composites exhibited the optical transitions within the 4f shell of the rare earth ions. 相似文献
17.
A nano-crystalline diamond (NCD) film with a smooth surface was successfully deposited on silicon by a hot filament chemical vapor deposition (HFCVD) method. Scanning electron microscopy (SEM), atomic force microscopy (AFM), RAMAN scattering spectra, as well as spectroscopic ellipsometry were employed to characterize the as-grown film. By fitting the spectroscopic ellipsometric data in the energy range of 0.75-1.50 eV with a three-layer model, Sildiamond+non-diamondldiamond+ non-diamond+voidlair, the optical constants are obtained. The refractive index of the NCD film varies little from 2.361 to 2.366 and the extinction coefficient is of the order of 10^-2. According to the optical transmittance and absorption coefficient in the wavelength range from 200 to 1 100 nm, the optical gap of the film is estimated to be 4.3 eV by a direct optical transition mechanics. 相似文献
18.
Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum 总被引:2,自引:0,他引:2
Aluminum (Al)/carbon nanotube (CNT) composite films were fabricated by sputtering pure Al on the surface of aligned multi-walled CNT arrays. Heat treatment was performed in the temperature range 400–950 °C. The interfacial reaction between the Al and the CNTs was investigated by annealing the samples at various temperatures. The results indicated that aluminum carbide (Al4C3) was formed at the interface between the Al and CNT layers, and microscopy observation revealed that the reaction generally occurred at locations containing an amorphous carbon coating, at defect sites, and at open ends of CNTs. Because the nanosized CNTs are precursors for carbide formation, the Al4C3 formed is also nanoscale in size. The carbide formed on the surface as well as on the tips of the CNTs improves the interfacial interaction between the CNTs and the Al layers. This also contributes to the enhancement of the mechanical properties of the composite. Our investigation demonstrated that chemical vapor deposited CNTs are a suitable candidate as reinforcing material for Al and other metal matrices. 相似文献
19.
LI Hong-xuan XU Tao HAO Jun-ying CHEN Jian-min ZHOU Hui-di XUE Qun-ji LIU Hui-wen 《中国有色金属学会会刊》2004,14(Z1)
Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V. 相似文献
20.
在铜基体表面电沉积铜-金刚石复合过渡层,采用电镀铜加固突出基体表面的金刚石颗粒,最后利用热丝化学气相沉积(HFCVD)法在复合过渡层上沉积大面积的与基体结合牢固的连续金刚石膜。采用扫描电子显微镜、拉曼光谱和压痕试验对所沉积的金刚石膜的表面形貌、内应力及膜/基结合性能进行研究。结果表明:金刚石膜由粗大的立方八面体颗粒与细小的(111)显露面颗粒组成,细颗粒填充在粗颗粒之间,形成连续的金刚石膜。复合过渡层中的露头金刚石经CVD同质外延生长成粗金刚石颗粒,而铜表面与粗金刚石之间的二面角上的二次形核繁衍长大成细金刚石颗粒。金刚石膜/基结合力的增强主要来源于金刚石膜与基体之间形成镶嵌咬合和较低的膜内应力。 相似文献