首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
阐述了国内外学者对金属基羟基磷灰石生物活性涂层的研究状况,论述了羟基磷灰石涂层的制备方法,认为该材料是最具有发展前景的生物硬组织替代材料之一。  相似文献   

2.
HA生物活性陶瓷涂层制备方法研究进展   总被引:6,自引:0,他引:6  
阐述了国内外学者对金属基羟基磷灰石生物活性涂层的研究状况,这了羟基磷灰石涂层的制备方法,认为该材料是最具有发展前景的生物硬组织替代材料之一。  相似文献   

3.
羟基磷灰石生物陶瓷具有优良的生物相容性与生物活性,但强度低、韧性差的力学性能限制了它的广泛应用。医用钛及钛合金具有优良的力学性能,但耐磨性较差,同时属于生物惰性材料,与骨的结合是一种机械锁合。在医用钛及钛合金表面制备羟基磷灰石生物陶瓷涂层是目前国内外的研究热点,具有重要的理论及实践意义。本文阐述了在医用钛及钛合金表面制备羟基磷灰石涂层方法的研究现状与研究进展,并对其工艺与理论发展进行了展望。  相似文献   

4.
综合介绍了文献及中国科学院上海硅酸盐研究所在等离子体喷涂生物涂层方面的近期研究进展。羟基磷灰石涂层已在临床上获得应用,但使用效果仍然受其较低的结合强度和结晶度所制约。通过优化喷涂工艺和制备羟基磷灰石基复合涂层,可有效提高羟基磷灰石涂层的结合强度和结晶度。此外,为了获得综合性能优良的植入体材料,制备了多种新型的生物活性陶瓷涂层。纳米氧化钛涂层经合适工艺的后处理可具有良好的生物活性,由于其与钛合金基体有较高的结合强度,在体液环境下具有高稳定性和生物相容性,使纳米氧化钛涂层成为一种具有发展前景的植入体涂层候选材料。新型生物活性硅酸钙涂层具有良好的生物活性,与骨组织能形成有效结合。此外,对这些新型涂层的生物活性机制也做了必要的描述。  相似文献   

5.
艾桃桃 《陶瓷》2008,(2):25-30
羟基磷灰石(HA)生物陶瓷涂层被认为是目前最好的用于替代人体硬组织的一种生物医用材料,具有很高的外科应用价值.含氟羟基磷灰石(FHA)涂层由于比羟基磷灰石涂层的溶解度低、热膨胀系数小且生物活性好,有着更为广泛的应用前景.对羟基磷灰石及其涂层的各种制备方法进行了概述,同时介绍了溶胶-凝胶法制备含氟羟基磷灰石涂层的技术特点,并对未来的发展前景进行了分析.  相似文献   

6.
羟基磷灰石(HA)是一种生物活性材料,存在于动物的骨组织中,与正常骨骼中的成分相似,并且易被人体组织吸收,又具有很好的生物相容性,所以在引导骨再生(GBR)技术中有广泛的应用。虽然羟基磷灰石能够与骨有较强的结合,但羟基磷灰石自身的脆性和强度缺陷限制了它在引导骨再生中的应用。近年来,许多含有羟基磷灰石的复合膜已被设计出来,这些复合膜的设计优化了羟基磷灰石的缺点,同时也发挥出了羟基磷灰石的优点。本文就HA分别与天然高分子材料、人工材料、金属材料复合展开了讨论,综述了含HA的复合膜在GBR中的研究进展。  相似文献   

7.
羟基磷灰石生物陶瓷涂层制备方法评述   总被引:19,自引:0,他引:19  
根据医用生物陶瓷羟基为磷灰石及医用金属材料的生物,力学特性,本文认为在金属基体表面涂覆羟基磷灰石是综合金属材料及生物陶瓷材料各自优越性阳有希望的途径这一。评述了羟基磷灰石涂层的制备方法,论证了较为优化的涂层结构。  相似文献   

8.
肖松  安燕  张红  殷雅婷  黄勋 《贵州化工》2010,35(4):16-19
羟基磷灰石是人体和动物骨骼的主要无机成分,具有良好的生物活性和生物相容性,是极其重要的生物医学材料。介绍了液相合成法制备超微粒羟基磷灰石的研究动态,包括化学沉淀法、水热反应法、溶胶凝胶法、微乳液法,以及现代新技术在液相合成法制备超微粒羟基磷灰石中的应用研究。指出多种方法的交叉合理运用是制备超微粒羟基磷灰石发展的方向。  相似文献   

9.
纳米羟基磷灰石是自然骨的主要组分之一,具有良好的生物相容性和生物活性,被广泛应用于骨组织的修复与替代材料。但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,且自然骨是由纳米羟基磷灰石和聚合物组成的天然复合材料,因此制备综合性能优越的羟基磷灰石/聚合物复合生物材料是当今研究的热点。综述了羟基磷灰石/聚合物复合生物材料的制备方法,并对其发展趋势进行了简单探讨。  相似文献   

10.
羟基磷灰石涂层的制备及其研究进展   总被引:1,自引:0,他引:1  
羟基磷灰石(HA)生物涂层材料作为最有发展前途的生物硬组织替代材料之一,已成为生物医用材料研究的重要内容。本文在综合了大量国内外文献的基础上,评述了这种涂层主要制备方法的原理和特点,指出了生物涂层材料的研究内容,最后展望了生物涂层材料的研究前景。  相似文献   

11.
Titanium (Ti) has been widely used in clinical applications for its excellent biocompatibility and mechanical properties. However, the bioinertness of the surface of Ti has motivated researchers to improve the physicochemical and biological properties of the implants through various surface modifications, such as coatings. For this purpose, we prepared a novel bioactive material, a lanthanum-incorporated hydroxyapatite (La-HA) coating, using a dip-coating technique with a La-HA sol along with post-heat treatment. The XRD, FTIR and EDX results presented in this paper confirmed that lanthanum was successfully incorporated into the structure of HA. The La-HA coating was composed of rod-like particles which densely compacted together without microcracks. The results of the interfacial shear strength test indicated that the incorporation of lanthanum increased the bonding strength of the HA coating. The mass loss ratios under acidic conditions (pH = 5.5) suggested that the La-HA coatings have better acid resistance. The cytocompatibility of the La-HA coating was also revealed by the relative activity of alkaline phosphatase, cellular morphology and cell proliferation assay in vitro. The present study suggested that La-HA coated on Ti has promising potential for applications in the development of a new type of bioactive coating for metal implants.  相似文献   

12.
A series of novel zinc oxide (ZnO) containing bioactive glass compositions in SiO2-Na2O-CaO-P2O5 system and composite with hydroxyapatite (HAp) nano-particles were developed and applied as coating on Ti-6Al-4V substrates. The bioactive glasses and their composites were also processed to yield dense scaffolds, porous scaffolds and porous bone filler materials. The coating materials and the coatings were characterized and evaluated by different in vitro techniques to establish their superior mechanical properties. The cytotoxicity test of the coating material, porous and dense scaffolds and coated specimens showed non-cytotoxicity, biocompatibility and promising in vitro bioactivity for all tested samples. The dissolution behaviour studies of the bioactive glasses and the composites in simulated body fluid showed promising in vitro release pattern and bioactivity for all tested samples. Addition of nanosized HAp improves mechanical properties of the bioactive glass coating without affecting the in vitro bioactivity.  相似文献   

13.
《Ceramics International》2017,43(13):9715-9722
In the present study, hydroxyapatite (HAp) coatings were deposited on Ti-6Al-4V alloy by solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes and the properties of the coatings were compared. The feedstock powder for SPS method was prepared by coprecipitation technique and characterized for phase and morphology. The obtained HAp coatings were characterized by X-ray diffractometry, Raman spectroscopy and FT-IR spectroscopy. The biocompatibility of the coatings was evaluated using osteoblast like cells. Both the SPS and SPPS hydroxyapatite coatings exhibited similar crystallinity. Interestingly, the HAp-SPS coating showed marginally higher biocompatibility compared to HAp-SPPS and control samples. The wear and corrosion behavior of these coatings was also studied in Hanks' medium. The hydroxyapatite coating fabricated from SPS technique exhibited better corrosion and wear resistance compared to SPPS coating.  相似文献   

14.
The addition of bio-inert ceramics such as alumina and zirconia can significantly improve the mechanical properties of hydroxyapatite bioactive coatings and increase their biocompatibility. In the present study, the surface of a titanium substrate was coated by the electrophoretic deposition method (EPD). Moreover, the reaction bonding process has been used to precipitate the nanocomposite containing the hydroxyapatite (HA), alumina, yitteria-stabilized zirconia (YSZ). The coating process was performed by an electrical power supply and a suspension of hydroxyapatite, aluminum, and YSZ nanopowders. For preparing a suspension consisting of 50% isopropanol and 50% acetone, 0.6 g/L of iodine was used as a stabilizer. Green and sintered coatings were analyzed by FE-SEM and XRD. In addition, the mechanical properties such as bonding strength, hardness, and toughness were measured. The hardness, bonding strength, and toughness of the HA coating were 107 ± 10.3 HV, 10.8 ± 3.2MPa, and 0.72MPa√m, respectively, while those of the HA-Al2O3-YSZ nanocomposite coating were 213 ± 1.8 HV, 35 ± 1.6MPa, and 1.6MPa√m, respectively.  相似文献   

15.
In order to improve biocompatibility of Ti metal substrates, 1-μm-thick nanostructured hydroxyapatite (HAp) coatings were deposited on the substrates through aerosol deposition, which sprays HAp powder with an average particle size of 3.2 μm at room temperature in vacuum. The original HAp particles were fractured into nanoscale fragments to form highly dense coating during the deposition process. Density of the HAp coating was 98.5% theoretical density (TD). Transmission electron microscopy observation revealed that the as-deposited coating consisted of HAp crystallites with average grain size of 16.2 nm and amorphous phase. Tensile adhesion strength between the coating and the substrate was 30.5±1.2 MPa. Annealing up to 500°C in air increased crystallinity and grain size in the coating without any delamination or crack according to X-ray diffraction analysis and electron microscopy. MTS assay and alkaline phosphatase activity measurements with MC3T3-E1 preosteoblast cell revealed that the biocompatibility was greatly improved by postdeposition heat treatment at 400°C in air due to well-crystallized HAp with average grain size of 29.3 nm. However, further heat treatment at 500°C deteriorated biocompatibility due to rapid growth of HAp grains to average size of 99 nm. Cross section of the coating on a commercially available Ti dental implant revealed full coverage of the surface with HAp.  相似文献   

16.
介绍了有望替代传统医用金属材料用作硬组织植入体的特种工程塑料聚醚醚酮(PEEK)的一些优异特性及其不足。首先,综述了在PEEK表面构筑羟基磷灰石、钛或二氧化钛等改性涂层对体外及体内生物活性的影响,并重点强调了改性涂层与基底结合力的重要性。其次,综述了直接表面改性手段,如等离子体浸没离子注入、激光处理、湿法改性等在PEEK表面构筑有利的表面物理及化学性质,赋予其表面生物活性的研究进展。最后,对构筑兼具生物活性和抗菌活性的PEEK表面进行总结,并对其发展方向进行了展望。  相似文献   

17.
The hydroxyapatite polyetheretherketone (HAPEEK) as a non‐degradable bioactive polymer composite material with coating of hydroxyapatite (HA) as a bioactive ceramic material can enhance the osteointegration of carbon fiber reinforced polyetheretherketone (CFRPEEK) as a non‐degradable bioinert polymer composite. This study describes the joining process of CFRPEEK and HAPEEK beam components and coating process of HA on the HAPEEK substrate to achieve the multi‐layer PEEK composite for use in the application of acetabular cup prosthesis. The CFRPEEK and HAPEEK components were ultrasonically welded while the HA was plasma sprayed on the HAPEEK substrate. Ultrasonic welding parameters (length and direction of the energy directors at the interface, welding time, and pressure) were investigated by single cantilever beam and lap shear tests to achieve the optimum bonding strength of CFRPEEK and HAPEEK components. Plasma spraying parameters (e.g., surface speed, powder feed, current, primary gas flow, and system voltage) were altered to achieve the good adhesion of HA coating on the HAPEEK substrate, which was evaluated by scratch test. The results showed that the proposed multi‐layer composite was successfully processed by carrying out the ultrasonic welding and plasma spraying coating processes. The outcomes of this study could be used to develop a non‐metal acetabular cup prosthesis using the proposed multi‐layer composition. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40915.  相似文献   

18.
In recent years, coating of metal orthopedic implants with bioactive layers to promote fixation with bones has become increasingly common. Calcium phosphate coatings on the Nitinol surface were formed using two low-temperature methods: sol–gel and electrochemically assisted deposition. The coatings formed were characterized using: X-ray diffraction analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Cyclic voltammetry studies were carried out in the deposition solution to determine parameters for electrodeposition and to understand electrochemistry of deposition. The barrier properties and corrosion resistance of coatings were tested in the physiological Hanks’ solution using electrochemical impedance spectroscopy. The sol–gel deposited coating consisted of two phases, hydroxyapatite and tricalcium phosphate (TCP). Apatite coatings containing TCP offered the opportunity to create a grafting material with high bioactivity and bioresorbility. The electrodeposited coating consisted of Ca-deficient HAp which resembles to biological HAp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号