首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of Listeria monocytogenes on the rind of Gorgonzola cheese is difficult to avoid. This contamination can easily occur as a consequence of handling during ripening. The aims of this study were to determine the efficiency of high-pressure processing (HPP) for inactivation of L. monocytogenes on cheese rind and to evaluate the influence of HPP treatments on sensory characteristics. Gorgonzola cheese rinds, after removal, were inoculated (about 7.0 log CFU/g) with L. monocytogenes strains previously isolated from other Gorgonzola cheeses. The inoculated cheese rinds were processed with an HPP apparatus under conditions of pressure and time ranging from 400 to 700 MPa for 1 to 15 min. Pressures higher than 600 MPa for 10 min or 700 MPa for 5 min reduced L. monocytogenes more than 99%. A reduction higher than 99.999% was achieved pressurizing cheese rinds at 700 MPa for 15 min. Lower pressure or time treatments were less effective and varied in effectiveness with the cheese sample. Changes in sensory properties possibly induced by the HPP were evaluated on four different Gorgonzola cheeses. A panel of 18 members judged the treated and untreated cheeses in a triangle test. Only one of the four pressurized cheeses was evaluated as different from the untreated sample. HPP was effective in the reduction of L. monocytogenes on Gorgonzola cheese rinds without significantly changing its sensory properties. High-pressure technology is a useful tool to improve the safety of this type of cheese.  相似文献   

2.
Build-up of flavour compounds throughout ripening of raw milk cheeses may result in strong over-ripening notes during refrigerated storage. In order to control the formation of free fatty acids (FFAs) and volatile compounds, and the appearance of off-odours, raw milk cheeses were high-pressure-processed (HPP) 21 or 35 days after manufacture at 400 or 600 MPa. Ripening proceeded at 8 °C until day 60 and, afterwards, cheeses were held at 4 °C until day 240. The effect of HPP on the formation of FFAs and volatile compounds was dependent on pressure level and cheese age at the time of treatment. On day 60, acetic and propionic acids, branched-chain FFAs and short-chain FFAs showed the lowest (p?<?0.05) concentrations in cheeses treated at 400 or 600 MPa on day 21, while medium- and long-chain FFAs were at similar levels in all cheeses. HPP influenced significantly (p?<?0.05) 84 out of the 94 volatile compounds found in cheese. On day 60, the lowest (p?<?0.05) concentrations of acids, alcohols and esters were recorded for cheeses treated at 400 or 600 MPa on day 21, and the lowest (p?<?0.05) concentrations of ketones for cheeses treated at 400 MPa on days 21 or 35. On day 240, all HPP cheeses showed lower (p?<?0.05) concentrations of aldehydes, esters and, particularly, sulphur compounds than control cheese, which exhibited putrid and rancid off-odours from day 120 onwards. Principal component analysis combining FFAs and volatile compounds discriminated 240-day control cheese from 120-day control cheese and both from the rest of cheeses.  相似文献   

3.
Penicillium roqueforti plays an important role in the ripening of blue-veined cheeses, mostly due to lactic acid consumption and to its extracellular enzymes. The strong activity of P. roqueforti proteinases may bring about cheese over-ripening. Also, free amino acids at high concentrations serve as substrates for biogenic amine formation. Both facts result in shorter product shelf-life. To prevent over-ripening and buildup of biogenic amines, blue-veined cheeses made from pasteurized ovine milk were high-pressure treated at 400 or 600 MPa after 3, 6, or 9 wk of ripening. Primary and secondary proteolysis, biogenic amines, and sensory characteristics of pressurized and control cheeses were monitored for a 90-d ripening period, followed by a 270-d refrigerated storage period. On d 90, treatments at 400 MPa had lowered counts of lactic acid bacteria and P. roqueforti by less than 2 log units, whereas treatments at 600 MPa had reduced lactic acid bacteria counts by more than 4 log units and P. roqueforti counts by more than 6 log units. No residual α-casein (CN) or κ-CN were detected in control cheese on d 90. Concentrations of β-CN, para-κ-CN, and γ-CN were generally higher in 600 MPa cheeses than in the rest. From d 90 onwards, hydrophilic peptides were at similar levels in pressurized and control cheeses, but hydrophobic peptides and the hydrophobic-to-hydrophilic peptide ratio were at higher levels in pressurized cheeses than in control cheese. Aminopeptidase activity, overall proteolysis, and free amino acid contents were generally higher in control cheese than in pressurized cheeses, particularly if treated at 600 MPa. Tyramine concentration was lower in pressurized cheeses, but tryptamine, phenylethylamine, and putrescine contents were higher in some of the pressurized cheeses than in control cheese. Differences in sensory characteristics between pressurized and control cheeses were generally negligible, with the only exception of treatment at high pressure level (600 MPa) at an early ripening stage (3 wk), which affected biochemical changes and sensory characteristics.  相似文献   

4.
Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the United States, underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free, rennet-set QF (manufactured from pasteurized, homogenized milk, milled before hooping, and not pressed) was cut into 4.5- × 4.5- × 15-cm blocks and double vacuum packaged. Phase 1 of the research examined the effects of hydrostatic HPP on the quality traits of fresh QF that had been warmed to a core temperature of 20 or 40°C; processed at 200, 400, or 600 MPa for 5, 10, or 20 min; and stored at 4°C for 6 to 8 d. Phase 2 examined the long-term effects of HPP on quality traits when QF was treated at 600 MPa for 3 or 10 min, and stored at 4 or 10°C for up to 12 wk. Warming the QF to 40°C before packaging and exposure to high pressure resulted in loss of free whey from the cheese into the package, lower moisture content, and harder cheese. In phase 2, the control QF, regardless of aging temperature, was significantly softer than HPP cheeses over the 12 wk of storage. Hardness, fracture stress, and fracture rigidity increased with length of exposure time and storage temperature, with minor changes in the other properties. Queso Fresco remained a bright white, weak-bodied cheese that crumbled and did not melt upon heating. Although high pressures or long processing times may be required for the elimination of pathogens, cheese producers must be aware that HPP altered the rheological properties of QF and caused wheying-off in cheeses not pressed before packaging.  相似文献   

5.
High pressure processing was investigated for controlling Cheddar cheese ripening. One-month-or 4-month-old Cheddar cheeses were subjected to pressures ranging from 200 to 800 MPa for 5 min at 25 C. The number of viable Lactococcus lactis (starter) and Lactobacillus (nonstarter) cells decreased as pressure increased. Subsequent storage of the control and pressure-treated cheeses at 10 degrees C caused viable cell counts to change in some cases. Free amino acid content was monitored as an indicator of proteolysis. Cheeses treated with pressures > or = 400 MPa evolved free amino acids at significantly lower rates than the control. No acceleration in free amino acid development was observed at lower pressures. Pressure treatment did not accelerate the rate of textural breakdown compared with the non-pressure treated control. On the contrary, pressure treatment at 800 MPa reduced the time-dependent texture changes. Results indicate that high pressure may be useful in arresting Cheddar cheese ripening.  相似文献   

6.
Brie cheeses were high pressure (HP)-treated at 400 or 600 MPa on days 14 or 21 after manufacture to prevent over-ripening. Lactic acid bacteria and Penicillium camemberti numbers declined markedly after HP treatment. In control cheese pH increased 2.0 units from day 21 to day 60, but less than 0.3 units in HP-treated cheeses. Cheeses treated at 600 MPa showed the maximum concentrations of residual caseins during refrigerated storage and control cheese the minimum concentrations. A 7.6-fold increase in hydrophobic peptides was recorded from day 21 to day 60 in control cheese and 0.8–1.6-fold increases in HP-treated cheeses. The maximum aminopeptidase activity was detected in control cheese, the highest free amino acid concentrations in cheeses treated at 400 MPa. The firmest texture was recorded for cheeses treated on day 14 at 400 or 600 MPa. HP-treated cheeses showed higher flavour quality scores than control cheese from day 60 onwards.  相似文献   

7.
Enzyme-rich cheeses are prone to over-ripening during refrigerated storage. Blue-veined cheeses fall within this category because of the profuse growth of Penicillium roqueforti in their interior, which results in the production of highly active proteinases, lipases, and other enzymes responsible for the formation of a great number of flavor compounds. To control the excessive formation of free fatty acids (FFA) and volatile compounds, blue-veined cheeses were submitted to high-pressure processing (HPP) at 400 or 600 MPa on d 21, 42, or 63 after manufacture. Cheeses were ripened for 30 d at 10°C and 93% relative humidity, followed by 60 d at 5°C, and then held at 3°C until d 360. High-pressure processing influenced the concentrations of acetic acid and short-chain, medium-chain, and long-chain FFA. The effect was dependent on treatment conditions (pressure level and cheese age at the time of treatment). The lowest concentrations of acetic acid and FFA were recorded for cheeses treated at 600 MPa on d 21; these cheeses showed the lowest esterase activity values. Acetic acid and all FFA groups increased during ripening and refrigerated storage. The 102 volatile compounds detected in cheese belonged to 10 chemical groups (5 aldehydes, 12 ketones, 17 alcohols, 12 acids, 35 esters, 9 hydrocarbons, 5 aromatic compounds, 3 nitrogen compounds, 3 terpenes, and 1 sulfur compound). High-pressure processing influenced the levels of 97 individual compounds, whereas 68 individual compounds varied during refrigerated storage. Total concentrations of all groups of volatile compounds were influenced by HPP, but only ketones, acids, esters, and sulfur compounds varied during refrigerated storage. The lowest total concentrations for most groups of volatile compounds were recorded for the cheese pressurized at 600 MPa on d 21. A principal component analysis combining total concentrations of groups of FFA and volatile compounds discriminated cheeses by age and by the pressure level applied to HPP cheeses.  相似文献   

8.
Hispánico cheese is a semihard variety made from a mixture of cow and ewe milks. Production of ewe milk declines in summer and autumn. To surmount the seasonal shortage of ewe milk and prevent the inactivation of milk enzymes by pasteurization, curd made in spring from ewe raw milk was pressurized at 200 and 300 MPa and stored frozen for 4 mo. Thawed ewe milk curds were added to fresh curd made from pasteurized cow milk for the manufacture of experimental Hispánico cheeses. Control cheese was made from a mixture of pasteurized cow and ewe milk in the same proportions as those used for experimental cheeses. Experimental cheeses exhibited lower dry matter content, higher aminopeptidase activity and total free amino acid concentration, and higher levels of acetic and propionic acids, aldehydes, alcohols, and esters compared with control cheese. In contrast, the concentration of total free fatty acids and ketones and the levels of textural parameters were significantly higher in control cheese. The use of ewe raw milk curd pressurized at 200 and 300 MPa, stored frozen and thawed for Hispánico cheese manufacture, was generally beneficial for cheese characteristics and increased cheese yield because of the lower dry matter content of experimental cheeses.  相似文献   

9.
The free fatty acid (FFA) profile of high pressure treated ewes' milk cheeses were studied to assess the effect of pressure treatment on cheese lipolysis. Cheeses were treated at 200, 300, 400 or 500 MPa (2P to 5P) at two stages of ripening (after 1 and 15 days of manufacturing; P1 and P15) and FFA were assayed at 1, 15 and 60 d ripening. On the first day of ripening, 3P1-cheeses showed levels of FFA twice that of the control cheeses. However, no significant differences were found between 3P1 and control cheeses at 60 d ripening. On the contrary, 4P1 and 5P1-cheeses had the lowest total FFA levels. The point at which pressure treatment was applied influenced the FFA profile of cheeses; cheeses pressurized at pressures<400 MPa on the first day of ripening were more similar to untreated cheeses than their homologues treated at 15 d.  相似文献   

10.
High-pressure-processing (HPP) at 400 or 600 MPa was applied to cheeses made from ewe raw milk, on days 21 or 35 after manufacturing, to reduce proteolysis and prevent over-ripening. The characteristics of HPP and non-pressurized (control) cheeses were compared during ripening at 8 °C until day 60 and further storage at 4 °C until day 240. HPP and control cheeses showed similar pH values throughout ripening, but on day 240 pH values remained 0.4–0.6 units lower for HPP cheeses than for the control cheeses. Casein degradation was significantly retarded in the 600 MPa cheeses. Their α-casein concentration was 48–52 % higher on day 60 and 30–33 % higher on day 240 than in the control cheeses while β-casein concentration was 25–26 % higher on day 60 and 100–103 % higher on day 240. No significant differences in para-κ-casein concentration between cheeses were found on day 60, but on day 240, it was 22–35 % higher in the 600 MPa cheeses than in the control cheese. Hydrophilic peptides, hydrophobic peptides and total free amino acids evolved similarly in HPP and control cheeses during the 60-day ripening period. However, on day 240 hydrophilic peptides were at 34–39 % lower levels in the 600 MPa cheeses than in the control cheeses, hydrophobic peptides at 7–16 % lower levels and total free amino acids at 25–29 % lower levels. Flavour intensity scores increased at a slower rate in HPP cheeses than in the control cheese. Flavour quality declined markedly in the control cheeses during refrigerated storage while it did not vary significantly in 600 MPa cheeses.  相似文献   

11.
Goats’ milk cheeses were made from raw (RA), pasteurized (PA; 72°C, 15 s) or pressure-treated (PR; 500 MPa, 15 min, 20°C) milk to compare textural, microstructural, and colour characteristics in relation to ripening time. Texture, microstructure and colour were evaluated by uniaxial compression and stress relaxation tests, confocal laser scanning microscopy and Hunter colorimetry, respectively.Raw and PR cheeses were firmer and less fracturable than PA cheese, but differences became less notable toward the end of ripening. PA and PR cheeses were less cohesive than RA cheese. Although cheeses exhibited a loss of elastic characteristics with ageing, PR cheese showed the most elastic behaviour initially. Confocal laser scanning micrographs displayed PR cheese with a regular and compact protein matrix, with small and uniform fat globules resembling the structure of RA cheese. Finally, colour evaluation demonstrated significant differences between cheeses due to milk treatments and ripening time.  相似文献   

12.
The main objective of this paper was to study the changes during refrigerated storage in the volatile compounds and the sensory characteristics of raw ewe's milk mature Torta del Casar cheese High Pressure Processing-treated (200 or 600 MPa for 5 or 20 min) on day 60 after manufacture. Most of the volatile compounds and sensory characteristics were significantly affected by the refrigerated storage and to a lesser extent by the HPP treatment. The 600 MPa HPP treatments caused a decrease in the levels of the most abundant volatile compounds (acids and esters) and in bitterness scores on days 120 and 180. A significant effect was also found for some compounds, the overall flavour, and saltiness on day 240 after manufacture.Industrial relevance textHigh pressure processing treatments at 600 MPa applied to mature raw ewe's milk cheese such as “Torta del Casar” cheese could be an interesting option for the cheese industry to prevent some of the changes that occur during refrigerated storage that are related to over-ripening and excessive bitterness development. In addition, compared to the application of the treatment before maturation is completed, treating mature cheeses is convenient for the cheese industry because it provides the advantage of not requiring any unpackaging steps, which allows the food industry the commercialization of the cheeses without any additional packaging.  相似文献   

13.
《Journal of dairy science》2019,102(10):8721-8733
Bloomy rind cheeses, including Brie, Camembert, and related varieties, are at high risk of contamination by environmental pathogens during manufacture and ripening. This risk is particularly high during ripening due to open-air exposure of the product. Currently, no kill step is applied after manufacture or post ripening to control food safety risks associated with Listeria monocytogenes contamination. Instead, cheesemakers must rely on sanitation and environmental monitoring to reduce this risk. High-pressure processing (HPP) is a nonthermal food-processing technology that can effectively reduce bacterial contaminants with minimal impact on the organoleptic properties of various foods. The objective of this study was to evaluate HPP as a potential intervention to maintain Camembert cheese quality and reduce risk associated with L. monocytogenes. Timing of HPP treatments (3, 11, and 45 d after manufacture) was based on the growth of L. monocytogenes during Camembert cheese ripening. High-pressure processing treatment of fully ripened cheeses (45 d) resulted in destruction of the surface mold, which caused browning and yellowing of the cheese rind. Applying HPP treatment earlier in the ripening process (11 d) resulted in a similar degradation of cheese appearance, which did not improve with continued ripening. Applying HPP treatment shortly after production (3 d; before the surface flora developed) delayed the development of the cheese rind and the textural ripening of the cheese. This early treatment time also resulted in free whey being expelled from the cheese, creating a firmer body. Applying HPP 11 d after manufacture resulted in >5 log reduction of L. monocytogenes at 450 and 550 MPa with holding times of 10 min. Although HPP was effective at reducing L. monocytogenes associated with bloomy rind cheeses, the quality deterioration would be unacceptable to consumers. Cheesemakers must continue to emphasize sanitation and environmental monitoring to reduce the risk of L. monocytogenes in bloomy rind cheeses.  相似文献   

14.
Abstract: High‐pressure inactivation of Salmonella Typhimurium DMST 28913, eating quality, and microstructure of pressurized raw chicken breast meat was determined. The inoculated samples (approximately 7 log CFU/g initial load) were processed at 300 and 400 MPa, using pressurized medium of 25 to 35 °C during pressurization. Weibull model was well fitted to the survival curves with tailing. Least severe conditions with acceptable inactivation levels were 300 MPa, 35 °C, 1 min (approximately 2 log reduction) and 400 MPa, 30 °C, 1 min (approximately 4 log reduction). Based on these 2 conditions, the 400 MPa treatment yielded the raw chicken meat with higher L* value, greater cooking loss, and lower water holding capacity. Cooked chicken breast meat prepared from the pressurized samples had firmer texture than the control. Scanning electron microscopic images showed that higher pressure resulted in increasing extent of protein coagulation and the contraction of the muscle bundles. Practical Application: For raw chicken breast fillet, 300 MPa, 35 °C, 1 min was the condition that reasonably reduced the load of Salmonella Typhimurium. However, the pressurized samples had greater cooking loss. Marination with brine containing sodium chloride and phosphate prior to pressurization might help improve this eating quality.  相似文献   

15.
This work studied the effect of high pressure processing (HPP) at 400, 500 and 600 MPa during 10, 5 and 3 min, respectively, on samples ewe cheese manufactured from raw milk, during storage (100 days) at 5 °C. Total aerobic mesophilic and lactic acid bacteria were slightly affected, decreasing by about 1.0 and 0.82 log CFU g?1, respectively, immediately after HPP treatment at 600 MPa for 3 min, while Enterobacteriaceae, yeasts and moulds, and Listeria innocua were reduced to below the quantification limits. Lactic acid bacteria decreased further during storage, showing increasing inactivation as the pressure level increased. Physicochemical parameters (water activity, moisture content, pH and titratable acidity) were generally not affected by HPP, while lipid oxidation increased throughout storage, with HPP samples showing lower values (50–66%) at 100 days of storage. The results indicated that HPP has potential to improve cheese microbial safety and shelf‐life, with a lower lipid oxidation level than nonpressurised cheese.  相似文献   

16.
Different non-thermal technologies have been proposed to extend the shelf-life of solid food products, high-pressure processing (HPP) being one of the emerging technologies which has been most extensively studied. In this study, one of the first commercial industrial-scale applications of HPP on a starter-free fresh cheese, with the aim of increasing its shelf-life, is presented. The effect of 500 MPa (5 min, 16 °C) on physico-chemical, microbial, colour, microstructure, texture and sensorial characteristics of starter-free fresh cheeses during cold storage of 21 days was studied. The results showed that pressurised cheeses presented a shelf-life of about 19–21 days when stored at 4 °C, whereas control cheese became unsuitable for consumption on day 7–8. On the other hand, cheese treated at 500 MPa was firmer and more yellow than the untreated one. However, these changes, which were detected by instrumental and sensory analysis, did not affect the preference for pressurised cheese. These results may lead to practical applications of HPP in the food industry to produce microbiologically safe cheese with extended shelf-life and sensory quality.  相似文献   

17.
This study aimed to investigate the effects of high‐pressure processing (HPP) (0.1‐400 MPa for 9 min) on the water holding capacity (WHC) of heat‐induced rabbit myosin gel and structural changes during thermal treatment (25–75 °C). HPP at 100 MPa significantly increased the WHC (< 0.05) and formed more regular and homogeneous three‐dimensional network. Myosin tails at 100 MPa unfolded completely during the thermal treatment, which was beneficial to form a high WHC gel network. However, myosin pressurised at 200 MPa and above formed a weak gel. Their heads were already aggregated before heating, preventing from subsequent thermal denaturation and aggregation. With the temperature increasing, unfolding of myosin tails was not sufficient for a filamentous network formation. These results suggested that HPP could modify the myosin structure and affect the gel formation during heating. The 100 MPa was the optimum pressure level for the WHC of rabbit myosin gel.  相似文献   

18.
High-Pressure-Freezing Effects on Textural Quality of Carrots   总被引:5,自引:0,他引:5  
Raw or 3 min blanched carrots were pressurized for 45 min at ?18°C ~–20°C and then thawed at 20°C. When carrots were frozen at 100Mpa (ice I), firmness decreased and strain increased. Textural values of carrots pressurized at 200MPa (liquid), 340MPa (ice III), 400MPa (ice V) at ca. –20°C were acceptable. When pressure was increased above 500MPa, the strain increased. Release of pectin and histological damage in carrots pressurized at 200, 340 and 400MPa were less than carrots frozen at 100 and 700MPa (ice VI). After pressurization at 200 and 340MPa at —20°C, carrots were stored in a freezer (–30°C). Firmness decreased and strain increased, but textural values were higher and histological structure were more intact than those frozen at –30°C (0.1MPa) then stored. Thus, high-pressure-freezing at 200, 340 and 400MPa appeared to be effective in improving both the texture and histological structure of frozen carrots.  相似文献   

19.
The effect of high pressure treatment on the inactivation of starter bacteria and spoilage yeasts in a commercially manufactured fresh lactic curd cheese was investigated. Fresh cheeses made from pasteurised bovine milk using a commercial Lactococcus starter preparation were vacuum-packaged and subjected to high pressure treatment within the range of 200 to 600 MPa for 5 min at ambient temperature (≤ 22 °C), and subsequently stored at 4 °C for up to 8 weeks. The number of viable starter bacteria and spoilage yeasts were enumerated immediately after treatment and at time intervals of 1, 2, 3, 4, 6, and 8 weeks during refrigerated storage. The viable count of Lactococcus in the cheeses treated at 200, 300, 400, and 600 MPa, showed approximate reductions of 2, 5, 6, and 7 log units under aerobic incubation conditions; and 3, 5, 6, and 7 log units under anaerobic incubation conditions. Treatment at 200 MPa did not significantly prevent the growth of yeasts, but in samples subjected to pressures ≥ 300 MPa, the growth of yeasts was effectively controlled for 6 to 8 weeks.Industrial relevanceAustralian specialty cheese manufacturers are interested in extending the shelf-life of selected products to extend domestic distribution and to take advantage of export opportunities. The potential domestic and export market of fresh lactic curd cheese can be hampered by relatively short shelf-life. High pressure processing (HPP), under optimised conditions, can be utilised as an effective tool to extend shelf-life while maintaining the quality attributes of this product.  相似文献   

20.
Semi-hard ewe's milk cheeses, frozen immediately after manufacture either slowly at –35 °C or rapidly at –80 °C and stored at –20 °C for 4 months were studied for microstructural and textural characteristics during subsequent ripening. Two control groups were used to establish the effect of freezing: the fresh unfrozen cheese and cheese thawed immediately after freezing. Freezing proper did not result in any marked changes in the textural parameters of the cheeses, but considerable changes were found in slowly frozen cheeses after 4 months of frozen storage. Shear strength values were lower in all frozen and stored cheeses, particularly in cheese samples frozen slowly compared to those in the unfrozen control batch. This parameter and firmness values were significantly lower in both slowly and rapidly frozen cheeses at the completion of ripening. Ripening tended to offset differences in elasticity, noticeable in the cheeses during the first 30 days of ripening. Light microscopy and electron microscopy revealed small cracks and ruptures in the cheeses which could not be observed by the naked eye. More extensive damage to the cheese microstructure was found in slowly frozen cheese samples stored frozen for 4 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号