首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The pre-sliding and static friction force behaviour at asperity level between a smooth ball and a smooth flat surface at different normal loads, as well as friction behaviour during full slip has been studied. The normal load dependence of the friction force and the preliminary displacement is discussed when the mean contact pressure is kept under 100 MPa. The theoretical model to calculate the shear stress and the preliminary displacement in the contact is discussed and the experimental data were used to verify the model. The results show that for low applied normal loads the adhesion force has an influence on the friction force measurements. Furthermore, the results for the friction force and preliminary displacement show good agreement with the theoretical trends. The experiments along with the model can be used to analyse the tangential traction in the contact and the behaviour of the stick–slip area. The measurement results along with the model were used to calculate the maximum shear stress at the point of sliding for different applied normal loads. It is also shown that at low applied normal loads the shear stress is not constant as compared to relatively high applied normal loads due to the presence of adhesion force.  相似文献   

2.
We have developed a technique for measuring frictional forces and contact areas, over a wide range of applied loads, at microscopic contacts reaching high sliding speeds near 1 m/s. Our approach is based on integrating two stand-alone methods: nanoindentation and quartz crystal microbalance (QCM). Energy dissipation and lateral contact stiffness are monitored by a transverse shear quartz resonator, while a spherical indenter probe is loaded onto its surface. Variations in these two quantities as functions of shear amplitude, with the normal load held fixed, reveal a transition from partial to full slip at a critical amplitude. Average values of both the threshold force for full slip and the kinetic friction during sliding are determined from these trends, and the contact area is inferred from the lateral stiffness at low shear amplitudes. Measurements are performed at loads ranging from 5 µN to 8 mN using an electrostatically actuated indenter probe. For the materials chosen in this study, we find that the full slip threshold force is about a factor of two larger than kinetic friction. The forces increase sublinearly with load in close correspondence with the contact area, and the shear strengths are found to be relatively insensitive to pressure. The threshold shear amplitude scales in proportion to the contact radius. These results demonstrate that the probe–QCM technique is a versatile and full-featured platform for microtribology in the speed range relevant to practical applications.  相似文献   

3.
Tribological properties of Si/Si contacts were measured on a microscale by using an atomic force/friction force microscope. Friction forces and pull-off forces between a Si tip and a polished surface of a Si(100) wafer were studied as a function of applied normal load and relative humidity of the surrounding air. The results show that pull-off forces and friction coefficients increased and were strongly influenced by capillary forces with increasing humidity. Tribological interactions during 20 passes of overlapping sliding contact at 50% relative humidity and very small loads of 70 nN were confined to the layer of adsorbates and chemical reactions, without measurable solid damage on the Si(100) wafer.  相似文献   

4.
R. Buzio  C. BoragnoU. Valbusa 《Wear》2003,254(9):917-923
We investigated the contact mechanics and friction forces between atomic force microscope (AFM) probes and self-affine fractal carbon films. We studied single-asperity contacts by means of conventional nanometric conical tips whilst custom-designed micrometric flat tips were adopted to form multiple junctions between the probe and the sample. By varying the externally applied load we found that the average frictional force follows a power-law behavior in the single-asperity regime and a linear behavior in the multi-asperity regime. The friction coefficient was the same for carbon specimens having different fractality. We also acquired quasi-static load-displacement curves on micrometric scale, revealing a strong dependence of the average indentation depth on the values of fractal parameters. A comparison of experimental data with contact theories for randomly rough surfaces is provided.  相似文献   

5.
Rubber coated nylon flat belts running over pulleys in practice display friction coefficients between 0·3 and 0·8. This paper studies the causes of the friction variations. Adhesive friction theory considers the friction force to be the product of the real areas of contact between the sliding surfaces and the shear stress at the contacts: these two quantities have been separately measured by running belts over transparent perspex pulleys and directly observing the contacts. It has been found that variations in contact from one belt to another due to their method of manufacture are as significant in explaining differences in their friction behaviour as are variations in shear stress caused by their different rubber formulations. Real areas of contact were less than one third of the apparent area and varied with load, elastic modulus and roughness of the belt surface in a way broadly understandable in terms of elastic contact mechanics. Shear stress were about 0·5 Nmm−2, perhaps determined by hydrocarbon films. Some belts showed real areas of contact not directly proportional to load. This led to their friction coefficients being load dependent.  相似文献   

6.
The friction behavior of two different materials, mica and ultra-high molecular weight polyethylene (UHMWPE), was evaluated at the nanoscale with an atomic force microscope and with a custom-built ball-on-flat microtribometer at the microscale. The same counterface (Si3N4 probe), environmental conditions (25 °C, RH < 10%), and similar load ranges were maintained for all experiments. The friction-force data obtained were analyzed for contact-area dependence. Friction force between silicon nitride and mica at the nanoscale showed initial non-linearity with normal load up to a certain load, beyond which surface damage was observed resulting in a linear dependence of friction force on normal load. At the microscale, the friction force of the mica–silicon nitride interface exhibited linear dependence on normal load. Friction force between silicon nitride and UHMWPE exhibited non-linearity with normal load at both the length scales, for the applied load ranges of our experiment. An appropriate contact mechanics theory was applied to calculate an interfacial shear strength value for the material pair at both the scales. The values at both the scales were similar, when the conditions were carefully maintained to be the same across scales.  相似文献   

7.
Atomic and friction force microscopy were employed to examine adhesion and friction between dodecanethiol self-assembled monolayers in pure media as well as in two-component heptane/acetone mixtures. In media that did not contain hydrogen bond donors, the pull-off forces were found to be in very good agreement with theoretic predictions based on the Lifshitz theory. As the hydrogen bond donor ability of the medium increased, the adhesion energy was found to be increasingly underestimated by the model, illustrating the importance of the medium–medium interactions outside the contact area in determining the adhesive properties of the contact at the nanoscale. Exceptionally, in n-octanol, the pull-off forces were considerably lower than predicted and a dual slope linear friction–load relation was observed. These observations were rationalized by the formation of physisorbed layers of octanol on the surfaces. The friction–load relationship in the other media was found to be dependent on the magnitude of adhesion. For weakly adhering systems, the friction–load relationship was linear, but as adhesion increased, a sublinear relationship was observed. The data were rationalized by treating the friction as the sum of an adhesion-dependent shear term characterized by a surface shear strength τ and a molecular plowing term characterized by a coefficient of friction μ. Thus, Amontons’ law appears to describe the limiting case of very weak adhesion where viscoelastic plowing is primarily responsible for energy dissipation, while a sublinear friction–load relationship emerges in other situations due to the dissipation of energy in shearing adhesive contacts.  相似文献   

8.
This paper describes a computational method to calculate the friction force between two rough surfaces. In the model used, friction results from forces developed during elastic deformation and shear resistance of adhesive junctions at the contact areas. Contacts occur between asperities and have arbitrary orientations with respect to the surfaces. The size and slope of each contact area depend on external loads, mechanical properties and topographies of surfaces. Contact force distribution is computed by iterating the relationship between contact parameters, external loads, and surface topographies until the sum of normal components of contact forces equals the normal load. The corresponding sum of tangential components of contact forces constitutes the friction force. To calculate elastic deformation in three dimensions, we use the method of influence coefficients and its adaptation to shear forces to account for sliding friction. Analysis presented in Appendix A gives approximate limits within which influence coefficients developed for flat elastic half-space can apply to rough surfaces. Use of the method of residual correction and a successive grid refinement helped rectify the periodicity error introduced by the FFT technique that was used to solve for asperity pressures. The proposed method, when applied to the classical problem of a sphere on a half-space as a benchmark, showed good agreement with previous results. Calculations show how friction changes with surface roughness and also demonstrate the method's efficiency.  相似文献   

9.
This investigation is concerned with the prediction of the frictional behavior of non-Newtonian fluids in a statically loaded journal bearing. The pressure distribution, friction and bearing load capacity are obtained for various values of the flow behaviour index, n. For the pseudoplastic fluids (n<1) the load carrying capacity and the friction forces are decreased, while shear thickening fluids (n>1) exhibited increases in the friction forces and load. The coefficient of friction was found to decrease as the value of n is increased, provided the dimensionless load exceeded a certain value  相似文献   

10.
The nanotribological properties of amorphous carbon (a-C) films of thickness in the range of 5-85 nm sputtered on Si(1 0 0) substrates were investigated with a surface force microscope (SFM), using a Berkovich diamond tip of nominal radius of curvature approximately equal to 200 nm and contact (normal) loads between 10 and 1200 μN. The dependence of the friction and wear behaviors of the a-C films on normal load and film thickness was studied in terms of nanomechanical properties, images of scratched surfaces, and numerical results obtained from a previous analytical friction model. The increase of the contact load caused the coefficient of friction to decrease initially to a minimum value and, subsequently, to increase to a maximum value, after which, it either remained constant or decreased slightly. The dominant friction mechanism in the low-load range was adhesion, while both adhesion and plowing mechanisms contributed to the friction behavior in the intermediate- and high-load ranges. Thinner (thicker) a-C films yielded higher (lower) friction coefficients for normal loads less than 50 μN (low-load range) and lower (higher) friction coefficients for normal loads greater than 150 μN (high-load range). Elastic and plastic deformation, microcracking, and delamination of the a-C films occurred, depending on the contact load and film thickness ranges. The reduced load-carrying capacity, relatively low effective hardness (strength) obtained with thinner films, and dominant friction and wear mechanisms at each load range illustrate the film thickness and contact load dependence of the nanotribological properties of the sputtered a-C films.  相似文献   

11.
The molecular-level function of model and commercial friction modifier additives in lubricants of the type used at the wet clutch interface in automatic transmissions has been studied using a surface forces apparatus (SFA) modified for oscillatory shear. The nanorheological properties of tetradecane with and without a model friction modifier additive (1-hexadecylamine) were examined in the boundary lubrication regime and compared to a fully-formulated automatic transmission fluid (ATF). 1-Hexadecylamine adsorbed as a single layer on the sliding surfaces, reduced the static frictional force and the limiting shear stress, and eliminated the stick–slip transition that exists in pure tetradecane. The ATF, which contains commercial-grade friction modifiers, showed nanorheological properties similar to those observed for tetradecane containing 0.1–0.2 wt% 1-hexadecylamine.  相似文献   

12.
The plastic-collapse load and post-collapse behaviour of ductile, thin-walled tubes compressed between cylindrical indenters are analyzed for a complete range of indenter radii; experiments on steel, brass and aluminium alloy tubes show the usefulness of this analysis when deflections are large. The effect of shear force is considered; shear can develop when the sides of the tube are constrained against lateral expansion. While crushing by diametrically opposed indenters results in symmetrical modes of deformation, any shear in addition to the normally applied forces results in an asymmetrical mode of deformation which is more compliant than the symmetrical mode. The asymmetrical mode of deformation is initially unstable.  相似文献   

13.
The plastic-collapse load and post-collapse behaviour of ductile, thin-walled tubes compressed between cylindrical indenters are analyzed for a complete range of indenter radii; experiments on steel, brass and aluminium alloy tubes show the usefulness of this analysis when deflections are large. The effect of shear force is considered; shear can develop when the sides of the tube are constrained against lateral expansion. While crushing by diametrically opposed indenters results in symmetrical modes of deformation, any shear in addition to the normally applied forces results in an asymmetrical mode of deformation which is more compliant than the symmetrical mode. The asymmetrical mode of deformation is initially unstable.  相似文献   

14.
A finite element modelling was carried out to analyse the chip morphology and adiabatic shear banding localisation processes when high-speed machining refractory titanium alloys. A thermo-visco-plastic model for the machined material and a rigid with thermal behaviour for the cutting tool were assumed. The study tries to understand the effect of the material behaviour on the produced chip morphology. One of the main characteristics of titanium chips is a segmented shape for a wide range of cutting conditions. This kind of morphology was found only dependent on adiabatic shear banding without material damage effect in the shear zones (primary and secondary shear zones). The influence of the material characteristics (strain softening, thermal softening, etc.) and machining parameters on the cutting forces and chip morphology were analysed. Three flow-stress laws and different friction coefficients (low and high friction) at the tool-chip interface was particularly analysed to explain the different morphologies obtained for refractory titanium chips.  相似文献   

15.
Layers of adsorbed vapor molecules have profound impacts on adhesion and friction. This article reviews fundamental aspects of alcohol and water adsorption effects on adhesion and friction. Capillary force, a component of adhesion force which arises from the liquid meniscus that forms between contacting surfaces, shows a strong vapor partial pressure dependence that is not explained by theory which neglects the adsorbed layer. Theoretical calculations accounting for the adsorbed layer give good agreement with experimentally measured adhesion forces at the nanoscale. Nanoscale friction measurements are also strongly affected by the meniscus and adsorbed layer. Conventional contact mechanics theory could not fully explain the load dependence of nanoscale friction, especially at vapor partial pressures below saturation. However, when the effect of the meniscus is included in theoretical analysis of experimental data, it is found that the friction depends on the shear strength change in the contract area and the dragging of the meniscus formed around the contact. The meniscus dragging term is dominant at low loads but becomes inconsequential at higher loads. When the adsorbed layer assumes structural ordering or causes tribochemical reactions, their adhesion and friction behaviors are further complicated and deviated from simple contact mechanics.  相似文献   

16.
The present paper shows that atomic force microscopy (AFM) imaging of friction force and phase lag in ambient air can be used to characterize the chemical contrast induced by electron beam (EB) irradiation on polyethylene glycol oxide (PEO) surface. Time-of-flight secondary emission mass spectroscopy measurements showed that the EB irradiation generates chemical contrast on PEO surface by decreasing the ether bond density. The AFM measurements showed smaller phase lag and lower friction and adhesive forces on the EB irradiated PEO surface, as compared to the non-irradiated PEO surface. While the chemical contrast in friction force had a linear dependence on the EB irradiation dose, the dependence of the chemical contrast in the phase lag was strongly non-linear. As the friction and adhesive forces depended on the AFM probe hydrophilicity and air humidity, the contrast in friction and adhesive forces is ascribed to different capillary condensation of ambient water vapour at the AFM tip contact with the EB irradiated and non-irradiated PEO surfaces, respectively.  相似文献   

17.
Nanotribological properties of NbSe2 are studied using an atomic friction force microscope. The friction force is measured as a function of normal load and scan speeds ranging from 10 nm s−1 to 40 μm s−1 under two atmospheres (air and argon). At low speed, no effect of atmosphere is noticed and a linear relationship between the friction and normal forces is observed leading to a friction coefficient close to 0.02 for both atmospheres. At high speed, the tip/surface contact obeys the JKR theory and the tribological properties are atmosphere dependent: the shear stress measured in air environment is three times lower than the one measured under argon atmosphere. A special attention is paid to interpret these results through numerical data obtained from a simple athermal model based on Tomlinson approach.  相似文献   

18.
This work shows the influence of solid–liquid interactions between engineering surfaces (steel and several types of DLC coatings) and lubricating oil (polyalphaolefin, PAO) on the coefficient of friction in the elastohydrodynamic lubrication (EHL) regime. Specifically, it confirms that the spreading parameter, rather than the contact angle, is the relevant parameter to evaluate the wetting behaviour of these surfaces with oils. Both the spreading parameter and the surface energy correlate very well with the friction in the EHL regime and can predict its behaviour. In particular, the polar component of the surface energy was found to correlate almost perfectly with the friction behaviour (a Pearson’s linear correlation coefficient of 0.999). By tailoring the wetting and surface energy—achieved by varying the DLC/DLC contacts with different types of DLC coatings—the coefficient of friction in the EHL regime was reduced by more than 30 % compared to steel/steel contacts. Poor wetting of the DLC coatings with a low surface energy is reflected in low values of the spreading parameter, which indicates easier slip of the lubricant over the solid surface due to shear action, and this leads to a lower viscous friction. A “Slip-inducing interaction model based on surface forces” is presented to explain why oil slip is promoted, particularly at surfaces with a low polar surface energy. The model suggests that a small number of permanent polar interactions, i.e. a larger proportion of intermittent dispersive interactions, results in less adhesive interactions between the predominantly non-polar liquid (oil) and the low polar surface (DLC), which enables easier slip at the solid–liquid interface.  相似文献   

19.
In sliding of organic self-assembled monolayer against a probe the friction force is generally found to vary linearly with normal load. Here, lateral force microscopy is used to track the physical changes at the interface brought about when an octadecyltrichlorosilane monolayer, self-assembled on a silicon wafer, is slid against a Si3N4 tip in the 0–30 nN load range. Regarding a morphologically heterogeneous monolayer domain to be made up of tiles of characteristic friction forces, each tile is in a unique physical state; the variation of area fraction (in a scan area) of each tile is tracked as a function of normal load. The area averaged friction force at a load is obtained by summing the fractional forces of constituent friction tiles. The friction force obtained thus, is found to vary linearly with normal tip load. It is observed that this force is dominated by the low-friction crystalline tiles at low loads and by the high friction more amorphous tiles at high loads. This suggests that for a self- assembled monolayer the load governance of friction as implied by the Amontons Law may be attributed to the physical changes that are brought about at the interface by changing the normal load.  相似文献   

20.
The measuring and modelling of friction are critically important for the motion control in nanopositioning, particularly when bearings are employed to cover the wide working distances. Since the positioning system usually operates at very low speed to achieve fine positioning, the boundary lubrication is the dominant regime. A detailed characterization of the friction of boundary lubrication formed by Poly–α–Olefin (PAO) with and without surfactant and a suspension of MoS2 in base oil has been performed in reciprocating sliding tests by steel/steel point contacts, and correlated with adhesion measurements by silicon/silicon point contacts. A microtribometer based on laser interferometers and glass springs, which can resolve 100 nN force in a speed range of 1–1000 μm/s was employed to detect the minute changes in forces. We find that a simple linear function instead of a logarithmic function is possible to describe the relationship between the friction force and operating speed for all the lubricants tested, though the gradients are quite different and under the influence of normal load. Comparing to PAO+surfactant and MoS2 suspension, PAO shows a much higher load-dependent coefficient of friction. This result is further confirmed by the repulsion force measurements, which shows a higher increase of contact pressure with the increase of normal load for PAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号