共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
进化计算已经被成功地用于模糊系统自动生成.但是当输入变量增加时,一个个体对应整个模糊系统的编码方式往往会因编码太长而降低进化的效率.但每个个体代表一条规则又会给适应度评价带来困难.本文提出了一种把合作式协同进化算法用于模糊系统自动生成的新方法.每个个体代表一条或几条规则组成的子模糊系统,把所有个体分为一些子种群,这些子种群进行合作式协同进化,引入一个自适应机制动态调整种群个数,最后从每个子种群中选出最佳个体构成完整的模糊系统.实验结果显示该算法提高了进化效率.最后对个体定义等相关问题进行了讨论. 相似文献
5.
组织协同进化分类算法 总被引:17,自引:3,他引:17
提出了一种有效的用于数据挖掘分类任务的方法——组织协同进化分类算法(Organizational CoEvolu-tionary algorithm for Classification,OCEC),与现有遗传分类方法的运行机制不同,它的进化操作直接作用于数据而不是规则,进化结束后再从各组织中提取规则,这样有利于避免在进化过程中产生无意义的规则。提出了三种组织进化算子——增减算子、交换算子与合并算子和一种组织选择机制,给出了属性重要度的进化方式并基于此定义了组织适应度,作者将算法用于UCI数据集,并与现有的基于遗传和非遗传的分类方法进行了比较。实验结果表明该文方法获得了更高的预测准确率,产生了更小的规则集;对同一数据集进行k—次交叉验证,其预测准确率的波动较小,因此本文算法具有更加稳定的性能。 相似文献
6.
7.
8.
9.
针对当前分类算法还存在的诸如伸缩性不强、可调性差、缺乏全局优化能力等问题,该文提出了一种有效的用于数据挖掘分类任务的方法——基于决策树的协同进化分类算法。实验结果表明该方法获得了更高的预测准确率,产生了更小的规则集。 相似文献
10.
11.
使用支持向量机算法直接求海量数据的模糊分类系统是相当困难的.为了解决这个问题,提出了基于邻域原理设计模糊分类系统的方法.将支持向量机的理论建立在距离空间上,设计出了计算支持向量的邻域算法;利用所求的支持向量,基于平分最近点方法设计出了求分类超平面的算法,求出模糊分类系统,该算法优于基于支持向量机直接求模糊分类系统的方法.实验结果说明,该方法可有效地解决对海量数据的模糊分类系统的设计问题. 相似文献
12.
基于改进遗传算法的TS模糊模型的优化设计 总被引:1,自引:0,他引:1
提出了一种新的将隶属度函数和规则库统一编码的改进遗传算法进行TS模糊模型整体优化设计的方法。利用FCM算法和最小二乘法辨识初始的模糊模型;利用改进遗传算法整体优化模糊模型,克服了以往将模型结构和参数分开优化的缺陷。为了提高模型的解释性,提出了将基于相似性的模糊集合和模糊规则的简化方法用于对模型的约简,并利用该方法对Mackey-Glass混沌序列建模。仿真结果验证了该方法的有效性。 相似文献
13.
提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类的样本。实验结果表明,该文本分类算法具有良好分类的性能。 相似文献
14.
15.
为解决入侵检测分类遇到的训练样本数量少、分类准确率低的问题,提出基于模糊支持向量机的多级分类机制。该分类机制训练模糊SVM模型将数据粗分为正常与攻击大类,采用DBSCAN算法产生细分模型进行攻击子集的自动聚类,将有关数据细分得到攻击的具体细类。在机制设计中,优化了隶属度函数的计算、设计了数据标准化与归一化等过程,并训练了高效分类器。实验表明,针对网络入侵检测数据中常见的孤立点干扰、噪声多,并且负样本占比多的网络业务数据集,新算法在保持分类准确率高的前提下,分类过程的计算时间较短。 相似文献
16.
针对基于粒子群的模糊聚类算法以隶属度编码时对噪音敏感,以及处理样本数小于样本维数的数据集效果较差等问题,通过改进其中的模糊聚类约束方法,提出一种改进的基于粒子群的模糊聚类方法.当样本对各类的隶属度之和不为1时,新方法在粒子群优化得出的隶属度基础上,根据样本与各类之间的距离对隶属度进一步分配,以使隶属度满足模糊聚类约束条件.新方法显著地改善了在隶属度编码下使用粒子群进行模糊聚类的效果,并通过典型的数据集进行了验证. 相似文献
17.
为了提高模糊模型辨识效率,提出了一种新的模糊模型建摸方法,该方法由两步组成:(1)采用基于特征相似性的特征选择方法,去除原始数据的冗余;(2)利用协同模糊聚类与G-K相结合的算法初始化模糊模型,使其前件和后件参数得到优化。采用该算法对有效的特征进行协同模糊聚类,模型参数得到改善,提高了模糊模型辨识的效率。模糊建模的实验结果表明了该方法的有效性。 相似文献
18.
分类是许多研究领域的关键问题,模糊规则的提取质量对分类器的性能又有着极大影响.所提取的规则不仅在分类能力上要达到最优,同时在规则数量上也不能太多,否则会影响规则搜索和匹配的速度.结合人工免疫的克隆选择原理,采用克隆选择算法,提取通过多精度模糊分割产生的大量模糊if—then规则中的少数精华规则,从而建立了模糊分类所需要的有效规则集合,同时还对优化目标函数进行了改进.经仿真实验证明,该方法所提取的模糊规则具有分类准确率高,规则数目较少等特点。 相似文献
19.
提出了一种基于对偶树复小波变换的模糊纹理图像分割算法,该方法包括纹理特征提取和纹理分类两个阶段,其中,特征提取在对偶树复小波变换的基础上进行;纹理分类可以直接用模糊C均值算法进行聚类从而完成纹理的分割,但由于该算法中隶属度函数是基于样本到类中心的距离设计的,这对非球形分布数据很不合理,针对该问题,引入样本与样本的紧致度来度量类中各个样本之间的关系从而修正隶属度函数,并将其用于纹理分类。实验结果表明与模糊C均值算法在运行时间上相差不大的情况下,改进的方法在分割精度、边缘准确性和区域一致性上都得到了明显的改善。 相似文献