首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电火花加工的加工表面与切削加工表面有很大的区别。但是,目前电火花加工工件的表面粗糙度仍然沿用切削加工表面粗糙度的评定方法和测试手段,这样不能准确地反映火花加工后工件表面的真实形貌。本文根据电火花加工的特点,提出电火花加工工件表面粗糙度的评定参数和测试方法。  相似文献   

2.
复合材料的切削加工表面结构与表面粗糙度   总被引:16,自引:1,他引:15       下载免费PDF全文
普通金属材料的切削加工理论表面粗糙度可以用公式计算。复合材料经切削加工后其表面留有各种凹凸缺陷,这些谷峰轮廓并非由刀刃直接切出,故不宜用现有普通材料的公式计算其理论表面粗糙度。纤维增强复合材料的切削加工表面结构和粗糙度与切削方向密切相关。颗粒增强复合材料无方向性,其已加工表面结构和粗糙度主要受增强颗粒硬度和粒度以及含量控制。增强体与基体的界面强度及切削刀具和工艺条件对复合材料加工表面粗糙度有很大影响。   相似文献   

3.
1.表面粗糙度是如何产生的? 答:在加工过程中,由于刀具与制件表面之间的摩擦、切削或压制时的塑性变形,以及工艺系统中高频振动等因素的作用,使被加工表面产生微观几何变形.表面粗糙度就是指加工表面上具有较小间距和峰谷所组成的微观几何形状特性.  相似文献   

4.
0引言随着机械加工行业的不断发展,表面粗糙度测量技术也取得了长足的进步,它在机械、电子、光学等精密加工行业中的地位也显得越发重要。表面粗糙度是指加工表面上具有较小间距和峰谷所组成的微观几何形状特征,其产生是由于在加工过程中,刀具与制件表面之间的摩擦、切削或压制时产生塑性变形,以及工艺系统中高频振动等因素的作用,使被加工表面产生微观几何变形。  相似文献   

5.
涂层硬质合金刀具对奥氏体不锈钢的切削特性   总被引:1,自引:0,他引:1  
为了深入探究涂层硬质合金刀具切削奥氏体不锈钢的切削机理,试验采用确定的进给量和背吃刀量,只改变切削速度的单因素法,来研究切削速度对奥氏体不锈钢工件加工表面质量的影响以及涂层刀具的切削机理。采用JEOL JSM-6360LV扫描电子显微镜和EDS能谱仪对工件加工表面及磨损刀片进行表面微区磨损形貌的观察分析与组成成分分析,采用X射线衍射仪对工件表面物相组成进行分析,采用激光扫描显微镜LSM对工件表面三维形貌进行观察分析。研究表明,切削速度较低时,不锈钢材料因材质较软,断屑性能较差;速度较高时,切削过程中粘着现象严重,致使摩擦剪应力较大,摩擦表面发生形变,进而诱发不锈钢的马氏体相变。因此,宜选用中速V=85m/min进行切削,在此速度下,被加工件获得的表面质量较好,表面粗糙度Ra=3.679μm。刀具磨损主要发生在前刀面靠近刀尖的部位,磨损机理主要表现为粘着磨损。研究发现,涂层硬质合金刀具在体现出一定的良好切削性能的同时也不可避免地发生了磨损,所以深入研究其切削机理能够丰富涂层刀具的切削理论,为提高涂层刀具在切削难加工材料时的刀具寿命以及拓展其在实际切削加工中的应用范围提供试验依据。  相似文献   

6.
常垲硕  郑光明  李阳  程祥  刘焕宝  赵光喜 《材料导报》2021,35(16):16086-16092
采用涂层刀具高速切削TC4(Ti6-Al4-V)时,其寿命短的问题较为突出.对涂层刀具进行表面后处理可大幅提高涂层刀具的表面完整性,是延长刀具寿命的有效途径.针对高速干切削钛合金的TiAlN涂层刀具,选用湿式微喷砂处理工艺进行表面后处理,分析微喷砂处理对涂层刀具表面微观形貌、表面粗糙度、表面显微硬度、表面残余应力的影响规律,并进行高速干切削试验,深入研究微喷砂处理对涂层刀具寿命及磨损机理的影响.结果表明:合适的微喷砂处理工艺(水料混合湿式微喷砂,喷砂压强为0. 1~0. 5 MPa,喷砂时间为0~10 s,喷砂颗粒为Al2 O3 或ZrO2 颗粒)可去除涂层初始表面大颗粒、凸起等缺陷,从而改善刀具的表面形貌,但过高的喷砂参数会在涂层刀面引入凹坑、微裂纹等,增大了其表面粗糙度值.喷砂颗粒、喷砂时间主要影响颗粒撞击涂层表面时对TiAlN涂层材料的去除量,改变涂层刀面的形貌、粗糙度与残余应力,喷砂压强主要影响颗粒的冲击力度,改变表面的硬度与残余压应力.与未处理刀具相比,处理后的涂层刀具的表面完整性提升显著,稳定磨损阶段持续时间延长,刀具寿命可提升50% ,微喷砂表面处理可广泛应用于各种涂层刀具表面处理.  相似文献   

7.
杨芊 《工业计量》1998,8(5):33-35
介绍表面粗糙度及形状的测量方法及特点,并给出了描述表面粗糙度与表面形状误差的方法。  相似文献   

8.
为探索研究微量油膜附水滴(Oils on Water,OoW)技术在切削中对表面粗糙度的影响,选出较适宜的切削用量,通过进行浇注乳化液和OoW切削液的切削工件表面粗糙度对比试验,分析了两种切削液的冷却润滑性能,再利用响应曲面法(Response Surface Methodology,RSM),选择切削速度、进给量和背吃刀量作为优化变量,表面粗糙度(Ra)作为响应性能指标,设计中心复合实验,利用Design-Expert软件建立了相对应的响应分析模型,并对所建模型进行了可靠性验证,试验结果表明,使用OoW进行切削润滑,能够更明显地降低工件表面粗糙度,通过研究工艺参数间的交互作用,得到了各工艺参数间的最优组合为:切削速度为119.97 m/min,进给量为0.14 mm/r,背吃刀量为0.48 mm。  相似文献   

9.
超精密车削表面粗糙度预测模型的建立   总被引:1,自引:0,他引:1  
介绍了一种利用回归分析法来建立单点金刚石刀具超精车削表面粗糙度预测模型的新方法,并通过建立的粗糙度预测模型,研究了铝合金超精密车削过程中切削速度,进给量和切削深度等参数对表面粗糙度的影响。通过实验分析表明:二次预测方程比一次预测方程更有效,而且适用范围比一次模型大。利用优化设计中的约束变尺度法对所建立的表面粗糙度预测方程进行了优化,可以实现对切削参数的优选,从而达到加工前在特定的条件下预测和控制表  相似文献   

10.
金刚石涂层刀具具有优异的硬度、耐磨性及导热性,在军事、航空航天等高精尖应用领域加工石墨、高硅铝合金、碳纤维增强塑料等难切削材料时无可替代,但目前金刚石涂层刀具存在两个问题:一是涂层与刀具间膜基结合力较差,导致涂层在使用中过早脱落;二是涂层表面粗糙度较大,难以保证被加工面的平整度与尺寸精度。本文从增强涂层结合力与降低涂层粗糙度两方面,将近年来科研人员对HFCVD法制备金刚石涂层的研究成果加以综述,并分析了各种因素对金刚石涂层刀具性能的影响。  相似文献   

11.
单点金刚石切削(SPDT)是加工单晶硅最常用的方法,刀具磨损是影响加工表面或工件表面质量的重要因素,但是其中的磨损机制尚不清楚。为了研究刀具磨损对于切削机制的影响,本研究建立了单点金刚石切削单晶硅的分子动力学(MD)仿真模型。仿真结果表明随着刀具磨损程度的增加,切削力、表面损伤层厚度、位错分布面积、剪切变形和相变程度均增加。当使用已经磨损的刀具切削单晶硅时,挤压起主要作用,当使用未磨损刀具时,剪切变形起主要作用,工件表面损伤层主要是由硅的非晶相组成,使用磨损的刀具时产生的轴向力F_t约是未磨损刀具的四倍。模拟结果同时表明使用未磨损金刚石刀具时会导致工件发生塑性变形,当刀具发生磨损后切削过程中会伴随有脆性断裂。  相似文献   

12.
从切削温度的影响因素出发,研究尼龙、45号钢以及碳纤维3种材料在车削加工过程中切削温度的变化规律。通过实验,改变切削参数,进行切削温度的测量并测得切削后的加工表面质量,研究了切削参数对切削温度的影响。实验结果表明,随着切削速度、进给量和背吃刀量的增加,切削温度升高,加工表面的粗糙度增大。为了研究刀具磨损对切削温度的影响,测量了相同切削参数下刀具不同磨损程度的切削温度和切削后的加工表面质量。分析发现,刀具磨损会造成切削温度的升高和表面粗糙度的增大。  相似文献   

13.
通过对航空航天领域应用的碳,碳(C/C)复合材料和硬铝材料切削表面进行三维表面粗糙度测量实验,研究了C/C复合材料切削表面粗糙度的二维评定与三维评定方法、幅度表征参数及分形表征。结果表明:对于C/C一类的复合材料需选用三维评定参数才能准确表达其切削表面粗糙度的真实特征;表面均方根偏差比表面算术平均偏差更适合作为C/C复合材料切削表面粗糙度的幅度评定参数,表面粗糙度的三维标准应优先选用表面均方根偏差作为评定参数;表面分形维数可作为C/C复合材料切削表面粗糙度的表征参数之一。  相似文献   

14.
针对典型的大尺寸薄壁轴承支撑件,根据加工过程中的变形规律合理分配加工余量、集中工序内容优化了工艺路线、通过分析切削状态和切削试验优化了数控刀具和切削参数,通过使用软辅助支撑降低切削状态下的震动趋势,在摆动结构主轴的5轴机床上使用动力头进行螺纹铣加工,并且使用CBN刀具进行轴承衬套的高硬度高粗糙度要求表面加工。解决了工件尺寸大、精度要求高、壁厚薄变形控制难度大、内腔螺纹可这性差以及轴承衬套磨削加工困难等技术难题。  相似文献   

15.
采用强流脉冲电子束对YW2硬质合金刀具进行辐照表面改性。根据Box-Behnken中心组合方法设计3因素3水平实验方案,以刀具表面的显微硬度和粗糙度为响应值,对加速电压、工作电流和脉冲次数等辐照工艺参数进行优化。实验结果表明,经综合分析优化后的脉冲电子束辐照最优参数:加速电压10 k V,工作电流180 A,脉冲次数45次。与未经处理刀具相比,该工艺下辐照后的YW2硬质合金刀具的显微硬度明显提高,而粗糙度值降低;对TC4钛合金的切削实验结果也验证了优化工艺处理后刀具的切削性能明显得到提高。  相似文献   

16.
采用聚晶金刚石(PCD)刀具对SiC增强铝基复合材料进行超精密车削加工试验,基于原子力显微镜(AFM)、扫描电子显微镜(SEM)和Talysurf-6型轮廓仪对加工表面进行检测和分析.结果表明,S iC增强相的切削变形机理对超精密级加工表面的影响重大(粗糙度Ra为0.025μm).若增强相在解理面直接被切削刀具切断,则SiC增强相附近区域的表面粗糙度值范围为6~10 nm,故产生超精密级加工表面的可能性大;若增强相以拔出或压入的机理进行切削变形,则不易获得超精密级加工表面.较高的切削速度、较小的进给量、较小的刀具钝圆半径和较大的PCD刀具晶粒度都有助于获得超精密级的加工表面,而背吃刀量对其影响很小.SiC增强相的体积分数和类型也是影响超精密级表面质量的重要因素,增强相体积分数越高,表面质量越差,晶须增强铝基复合材料较颗粒增强铝基复合材料可获得更好的表面质量.  相似文献   

17.
杨芊 《中国计量》1998,(7):47-48
用足够的放大倍数研究零件表面时,发现所有的固体表面都是不平的。在最小的情况下,可认为表面粗糙度是以单个的原子或分子的尺寸呈现的。例如,当我们仔细将云母样品分层时,表面就可能是以分子组成光滑表面的。而实际工程中用的准确度最高的抛光表面所呈现的粗糙度尺寸也远远大于原子的尺寸。研究表面粗糙度及表面形状,最理想的测量方法应是扫描显微镜或原子力显微镜法,它们能解决单个原子的问题。但对大多数工程实际来讲,更适合的方法是研究表面形貌。一、表面粗糙度及表面形状的测量1.接触测量法表面光度仪,其基本原理如图1所示。…  相似文献   

18.
通过车削加工试验和数据测量,研究了刀具参数及刀具磨损量对加工表面粗糙度的影响.应用Matlab计算得出刀具参数变化和刀具磨损量对加工表面粗糙度的定量关系,为加工时选用刀具参数及控制刀具磨损量提供理论依据.  相似文献   

19.
分析了在线电解修整(ELID)磨削和磁流变光整加工(MRF)的加工原理与特点,充分结合这2种技术的优点对单晶硅反射镜进行纳米级精度的组合加工.首先进行ELID高效率磨削,在线检测工件表面误差后进行补偿磨削,使反射镜面加工成形,并获得较好的形状精度和表面质量.然后,利用磁流变技术进行确定性的光整加工,以减少反射镜的亚表面损伤,使加工表面的形状精度与表面粗糙度得到很大提高与改善.利用该组合工艺,对硅反射镜进行了系列的加工实验,高效率地得到了低于1nmRMS的表面粗糙度和69nmp-V形状精度的工件表面.  相似文献   

20.
就数控加工而言,其主要包括磨削加工以及车削加工2个方面,对数控加工过程产生重要影响的一个因素是工件表面的粗糙程度。刀具的磨损、机床精度、操作者技术水平、夹具的装夹程度以及切削条件等因素均可能对工件表面粗糙程度造成影响。该文首先针对数控加工表面粗糙的影响因素进行了逐一分析,然后针对如何改善和控制表面粗糙程度的方法进行阐述,以期能够有效提高机器零件的使用性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号