首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute lung allograft rejection is believed to be initiated by passenger leukocytes, such as alveolar macrophages (AM), in the donor organ, which release TNF-alpha, and present alloantigens to host lymphocytes, to up-regulated Th1 cellular and humoral immunity. However, the role of donor AM in local TNF-alpha synthesis, and their ability to induce local Th1 cellular and humoral immunity have not been evaluated. By depleting Brown Norway (BN, RT1n) rat lung allografts of AM before transplantation into Lewis rat (LEW, RT1(1)) recipients, the current study determined the role of donor AM in including the production of TNF-alpha, IFN-gamma (Th1 cytokine), IL-4 (Th2 cytokine), IgG subtypes, and rejection pathology in the allograft. The data show that compared with untreated BN allografts, pretransplant depletion of donor lung AM resulted in significantly less TNF-alpha, and IFN-gamma production in allograft bronchoalveolar lavage fluid with variable effects on local IL-4 production. Depletion of AM in the donor lung before transplantation affected the local production of several IgG subclasses. However, pretransplant depletion of donor AM had no effect on the development of the pathology of severe acute rejection. These data show that donor AM have a central role in the local synthesis of TNF-alpha and induce the production of IFN-gamma and IgG subtypes, locally, during acute lung allograft rejection. However, depletion of AM before transplantation does not prevent the development of severe acute rejection in BN rat lungs, transplanted into LEW recipients.  相似文献   

2.
3.
Stimulation of murine CD4+ T cells with staphylococcal enterotoxin B (SEB) results in the preferential development of T helper (Th) 1 cells [i.e. high interferon (IFN)-gamma and low interleukin (IL)-4, IL-5 and IL-10]; whereas in response to plate-bound anti-CD3 or anti-T cell receptor-alpha beta, Th1 as well as Th2 cells develop. In the present study, we examined the mechanism which is responsible for the selective Th1 development in the SEB system. The addition of IL-4 resulted in a strong development of Th2 cells showing that SEB stimulation can result in Th2 differentiation. Co-stimulation with anti-CD28 was insufficient in this regard. Lack of Th2 development in the SEB system was in part due to the inhibitory effect of endogenously produced transforming growth factor-beta (TGF-beta), because anti-TGF-beta allowed the development of Th2 cells. Similarly, TGF-beta inhibited Th2 development and stimulated Th1 development in the anti-CD3 system. This shift was only partially prevented by also including IL-4 in the cultures. The effects of TGF-beta could only partially be explained by stimulation of IFN-gamma or inhibition of IL-4 as intermediatory cytokines: (1) TGF-beta stimulated Th1 development even in the presence of anti-IL-4 and anti-IFN-gamma, and (2) a strong inhibitory effect of anti-TGF-beta on Th1 development was still observed when anti-IL-4 and IFN-gamma were simultaneously added to the cultures. It is concluded that SEB favors Th1 development by stimulation of TGF-beta production. Inhibition of Th2 development by TGF-beta is due, in part, to inhibition of IL-4 and stimulation of IFN-gamma, and, in part, to a direct effect of TGF-beta on the responding T cells.  相似文献   

4.
We recently reported that resting clones of murine Th1 cells, but not resting Th2 cells, expressed a detectable level of the beta-2-adrenergic receptor (beta 2AR). In the present study, we proposed that the level of beta 2AR expression on anti-CD3 mAb-activated CD4+ effector Th cells may differ from the level on resting cells, and that a change in receptor expression may alter the functional responsiveness of these cells to either the beta 2AR-selective ligand terbutaline or the sympathetic neurotransmitter norepinephrine. Following anti-CD3 activation, the beta 2AR was expressed on Th1 cells, but not Th2 cells. The number of binding sites on Th1 cells was maintained, with no change in affinity, over a 24-h activation period. When Th clones were exposed to terbutaline following anti-CD3 activation, Th1 cell, but not Th2 cell, cytokine production was modulated. IL-2 production by Th1 cells was decreased, while IFN-gamma production was not significantly altered. The decrease in IL-2 production was concentration dependent and was blocked by an antagonist. In comparison with control supernatants, the lower level of IL-2 present in terbutaline-exposed culture supernatants supported the proliferation of an IL-2-dependent Th1 clone to a lesser degree. Additionally, norepinephrine down-modulates IL-2, but not IFN-gamma, production by binding specifically to the beta-adrenergic receptor. Thus, a detectable level of the beta 2AR is expressed on activated Th1 cells, but not activated Th2 cells, thereby providing a mechanism by which IL-2 production is preferentially modulated by an endogenous and therapeutic ligand following Th1 cell activation.  相似文献   

5.
The delineation of T helper cell subsets into T helper type 1 (Th1) and T helper type 2 (Th2) populations based on the production of specific cytokines has been useful in understanding the regulation and progression of immune-based pathologies. In order to test the relevance of this concept to human solid organ transplantation, in situ and system Th1 and Th2 cytokine profiles were characterized in liver allograft recipients. Bile and serum samples obtained posttransplant were analyzed for the cytokines IL-2, IFN-gamma, IL-4, and IL-10. Significant elevations of IL-4 and IL-10 were measured at the site of graft rejection. In contrast, IL-2, IFN-gamma, and IL-4 were markedly elevated in the circulation during rejection. Analyses of sequential bile samples revealed that Th1 and Th2 cytokines showed similar kinetics of production in response to alloantigen. Taken together, these results indicate that acute rejection of human allografts can proceed [correction of procede] in the presence of minimal levels of the Th1 cytokines IL-2 and IFN-gamma and high levels of IL-4 and IL-10.  相似文献   

6.
7.
The co-stimulatory molecules B7-1/B7-2 expressed on the surface of antigen-presenting cells have been suggested to influence the development of T helper 1 (Th1)-versus Th2-immune responses. These studies were conducted to elucidate the effect of immunoregulatory cytokines which influence the development of Th1/Th2 immune responses on the expression of the B7 isoforms B7-1 and B7-2 on resting and activated human monocytes and B cells. Interleukin (IL)-4 and IL-10, which induce the development of Th2 immune responses, down-regulated B7-2 and moderately up-regulated B7-1 expression on resting CD14+ monocytes in peripheral blood mononuclear cells. Interferon-gamma (IFN-gamma), which induces the development of Th1 immune responses, enhanced the expression of both B7-1 and B7-2 isoforms. Tumor necrosis factor (TNF)-alpha, which elicits both Th1- and Th2 characteristics depending on experimental conditions, down-regulated B7-2 but did not alter B7-1 expression. The effect of TNF-alpha and B7-2 expression is not mediated through endogenously produced IL-10, as addition of anti-IL-10 antibodies did not restore B7-2 expression. None of the other cytokines tested, including IL-1 alpha, IL-1 beta, IL-2, IL-5, IL-6, IL-12, granulocyte/macrophage colony-stimulating factor (GM-CSF), and transforming growth factor (TGF)-alpha, modulated the expression of B7 isoforms on resting monocytes. Lipoolysaccharide stimulation of monocytes down-regulated B7-2 and up-regulated B7-1 expression in a manner similar to IL-10. The expression of B7-1 and B7-2 on purified B cells were not altered by any of the cytokines tested, including IL-1 alpha, IL-1 beta, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IFN-gamma, TNF-alpha, TGF-alpha and GM-CSF. Taken together, our results suggest that the cytokines which induce Th1/Th2 immune responses exert differential effects on B7 isoform expression on resting monocytes but have no effect on resting or activated B cells.  相似文献   

8.
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by destruction of the intrahepatic bile ducts. It is generally believed that cellular immune mechanisms, particularly involving T cells, result in this bile duct damage. The relative strength of Th1 and Th2 responses has recently been proposed to be an important factor in the pathophysiology of various autoimmune diseases. In this study, we have attempted to identify the Th subset balance in PBC, by detection of cytokines specific to the two T-cell subsets, i.e., interferon gamma (IFN-gamma) for Th1 cells and interleukin-4 (IL-4) for Th2 cells. We analyzed IFN-gamma and IL-4 messenger RNA (mRNA) positive cells in liver sections from 18 patients with PBC and 35 disease controls including chronic active hepatitis C, extrahepatic biliary obstruction (EBO), and normal liver, using nonisotopic in situ hybridization and immunohistochemistry. Mononuclear cells expressing IFN-gamma and IL-4 mRNA were aggregated in inflamed portal tracts in PBC livers, but were rarely present in extrahepatic biliary obstruction, alcoholic fibrosis, or normal liver sections. The IFN-gamma and IL-4 mRNA positive cells in PBC livers were detected in significantly higher numbers than in control livers (P < .01). Moreover, IFN-gamma mRNA expression was more commonly detected than IL-4 expression in PBC livers, and the levels of IFN-gamma mRNA expression were highly correlated with the degree of portal inflammatory activity. IFN-gamma mRNA-positive cells were detected primarily around damaged bile ducts that were surrounded by lymphoid aggregates. The data indicate that Th1 cells are the more prominent T-cell subset in the lymphoid infiltrates in PBC.  相似文献   

9.
Tumor necrosis factor-alpha (TNF) is a multifunctional cytokine evoked in response to alloantigen stimulation and may be involved in lymphocyte activation, adhesion molecule expression, and regulation of MHC class II antigens. Anti-TNF treatment prolongs cardiac allograft survival. We investigated the role of anti-TNF in the regulation of MHC class II antigens and cytokine mRNA expression of TNF, interferon-gamma (IFN), IL-2, IL-4, and IL-10 in cardiac allografts to elucidate its immunological mechanism. These in vivo studies were conducted using a rat MHC mismatch Brown-Norway to Lewis (BN to LEW) heterotopic cardiac transplant model. In control untreated rats, allografts were rejected at 6.8 +/- 0.6 days. Allograft survival was significantly prolonged to 12.7 +/- 1.4 days with anti-TNF treatment. MHC class II expression, analyzed by indirect immunofluorescence cytometry, demonstrated that MHC class II-positive cells increased by 25% in spleens of untreated allografted rats compared to naive rats, while anti-TNF-treated allografted rats had a similar percentage of MHC II cells as naives. Further, naive, untransplanted rats and both anti-TNF and untreated, transplanted rats had heart and spleens harvested on Day 5 post-transplant. Cytokine mRNA expression was determined by semiquantitative RT-PCR. In heart and spleen cells from naives, TNF mRNA expression was undetectable or very weak. However, in rejecting allografts and spleen cells from untreated recipients, TNF expression was remarkably increased, while anti-TNF attenuated this TNF expression in both heart graft and spleen cells. Furthermore, IL-2, IL-10, and IFN expression were absent in naive hearts. However, in untreated allografts IL-2, IL-10, and IFN were strongly expressed, which was markedly decreased after anti-TNF treatment. Finally, IL-4 expression was found equally in naive hearts, untreated allografts, and anti-TNF-treated allografts. These results suggest that anti-TNF antibody treatment may not only neutralize TNF activity but also play a role in altering cytokine mRNA expression and MHC class II expression.  相似文献   

10.
11.
12.
Anti-CD4 mAb-induced tolerance to transplanted tissues has been proposed as due to down-regulation of Thl cells by preferential induction of Th2 cytokines, especially IL-4. This study examined the role of CD4+ cells and cytokines in tolerance to fully allogeneic PVG strain heterotopic cardiac allografts induced in naive DA rats by treatment with MRC Ox38, a nondepleting anti-CD4 mAb. All grafts survived >100 days but had a minor mononuclear cell infiltrate that increased mRNA for the Thl cytokines IL-2, IFN-gamma, and TNF-beta, but not for Th2 cytokines IL-4 and IL-6 or the cytolytic molecules perforin and granzyme A. These hosts accepted PVG skin grafts but rejected third-party grafts, which were not blocked by anti-IL-4 mAb. Cells from these tolerant hosts proliferated in MLC and produced IL-2, IFN-gamma, and IL-4 at levels equivalent to naive cells. Unfractionated and CD4+ T cells, but not CD8+ T cells, transferred specific tolerance to irradiated heart grafted hosts and inhibited reconstitution of rejection by cotransferred naive cells. This transfer of tolerance was associated with normal induction of IL-2 and delayed induction of IFN-gamma, but not with increased IL-4 or IL-10 mRNA. Transfer of tolerance was also not inhibited by anti-IL-4 mAb. This study demonstrated that tolerance induced by a nondepleting anti-CD4 mAb is maintained by a CD4+ suppressor T cell that is not associated with preferential induction of Th2 cytokines or the need for IL-4; nor is it associated with an inability to induce Th1 cytokines or anergy.  相似文献   

13.
T-cells and their cytokines are thought to play a major role in the genesis of cellular infiltration and rejection in human kidney allografts. Production of Th1 (IFN-gamma) and Th2-type (IL-4 and IL-5) cytokines was assessed in a large series of T-cell clones, derived from core biopsies of kidney grafts in 10 patients with acute interstitial grade I/II rejection (AIR), 6 patients with a histology of "borderline rejection" (BLR) and 3 with cyclosporine A (CsA) toxicity, all receiving standard maintenance immunosuppression. Biopsies were pre-cultured in IL-2 in order to preferentially expand T-cells activated in vivo, and T-cell blasts were cloned with phytohemagglutinin (PHA) and IL-2 using a highly efficient (23 to 98%) cloning technique. A total of 483 T-cell clones obtained from AIR episodes were compared with 346 and 132 clones derived from patients with BLR episodes and CsA toxicity, respectively. In two series of 22 AIR and 77 BLR T-cell clones, alloreactivity against donor cells was shown by 25 and 14% of CD8+ and 21 and 4% of CD4+ clones, respectively. When stimulated by donor-derived EBV B-cells, all these alloreactive clones produced IFN-gamma, but not IL-4 or IL-5 (Th1 clones). Upon stimulation with PHA, the principal qualitative and quantitative differences between AIR- and BLR-derived T-cell clones were that cells derived from AIR patients: (i) showed significantly higher proportions (80 +/- 15 vs. 55 +/- 13%) of Th1 clones in their progeny; (ii) included smaller proportions (3 +/- 4 vs. 20 +/- 17%) of clones incapable of producing IFN-gamma, IL-4 or IL-5 ('null' clones); and (iii) produced significantly higher quantities of IFN-gamma (100 +/- 50 vs. 36 +/- 7 U/10(6) cells/ml), these quantities also being significantly correlated (r = 0.83) with the degree of interstitial graft infiltration (item 'i' in the Banff histological grading). The clones derived from CsA toxicity biopsies exhibited a pattern very similar to that found in BIR cases. These data lead us to conclude that the powerful inflammatory response elicited in acute rejection of a kidney graft recruits and activates both allospecific and non-specific Th1 effector cells, which are primed to high IFN-gamma production. Our results also suggest that IFN-gamma could contribute, at least in part, to the degree of graft infiltration and to the severity of the rejection episode.  相似文献   

14.
We have recently shown that T cells infiltrating cardiac allografts early in graft rejection use a limited T-cell receptor (TCR) V beta repertoire. In this study we tested whether this limited repertoire of V beta genes is important for graft rejection. A cell line, AL2-L3, was established from LEW lymphocytes infiltrating ACI heart allografts 2 days after transplantation. This cell line is composed of CD4+ T cells that primarily recognize the class II RTI.B major histocompatibility complex (MHC) molecule expressed by the donor graft. This cell line precipitated acute rejection of donor hearts with a median survival time (MST) of 10.5 days following adoptive transfer to sublethally irradiated LEW recipients. This rate of graft rejection was significantly (P < 0.0007) accelerated when compared with a MST of 60 days for allografts in irradiated control recipients. The AL2-L3-mediated acceleration of graft rejection was donor specific as WF third-party heart allografts were rejected with a delayed tempo (MST = 28.5 days). The V beta repertoire of this cell line was primarily restricted to the expression of V beta 4, 15 and 19 genes. The nucleotide sequence analysis of the beta-chain cDNAs from this cell line demonstrated that the restricted use of the V gene repertoire was not shared with the N, D and J regions. A wide variety of CDR3 loops and J beta genes were used in association with selected V beta genes. These data provide evidence for the role a restricted repertoire of V beta genes plays in cardiac allograft rejection in this model. The restricted usage of the V beta repertoire in an early T-cell response to allografts may provide the opportunity to therapeutically disrupt the rejection reaction by targeting selected T-cell populations for elimination at the time of organ transplantation.  相似文献   

15.
Replication-deficient adenovirus (Ad) vectors are effective to specifically target the respiratory epithelium for either corrective gene therapy such as cystic fibrosis or for mucosal immunization. As a consequence of transducing the lower respiratory tract with an E1/E3 deleted Ad5 vector, host responses have been characterized by the duration of transgene expression and by the induction of CTL responses. However, limited emphasis has been devoted to understanding the contribution of CD4+ T cell responses to the Ad vector. Both CD4+ and CD8+ T cells migrate into the lung following sequential intratracheal Ad5 transgene instillations. Isolated CD3+ T lymphocytes from the lungs were predominantly of the Th2 type, and after cell sorting, the IL-4-producing T cells were largely CD4+, while IFN-gamma expression was associated with both CD4+ and CD8+ T cells. Ab responses to the Ad5 vector and to the expressed transgene beta-galactosidase (beta gal) revealed elevated bronchial and serum IgA and IgG Abs with low neutralization titers. Analysis of serum IgG subclass responses showed IgG1 and IgG2b with lower IgG2a Abs to Ad5 and IgG2a and IgG2b Ab responses to beta gal. Ad5-specifc CD4+ T cells produced both Th1 (IFN-gamma and IL-2)- and Th2 (IL-4, IL-5, IL-6)-type cytokines, while beta gal-specific CD4+ T cells secreted IFN-gamma and IL-6. This study provides direct evidence for the concomitant induction of Th2- with Th1-type responses in both the pulmonary systemic and mucosal immune compartments to the Ad5 vector as well as a Th1-dominant response to the transgene.  相似文献   

16.
Upon primary activation, T helper (Th) cell populations express different cytokines transiently and with different kinetics. Stimulation of naive murine splenic Th cells with the bacterial superantigen Staphylococcus aureus enterotoxin B (SEB) in vitro results in expression of IL-2, IFN-gamma and IL-10 with fast, intermediate and slow kinetics, respectively. This first report of a functional analysis of cells separated alive according to cytokine expression shows that these cytokines are not produced by different Th cell subpopulations, but can be expressed sequentially by individual Th cells. Th cells, activated with SEB for 1 day and isolated according to expression of IL-2, using the cellular affinity matrix technology, upon continued stimulation with SEB later secrete most of the IFN-gamma and IL-10. Likewise, after 2 days of SEB culture, cells expressing IFN-gamma, separated according to specific surface-associated IFN-gamma as detected by magnetofluorescent liposomes, 1 day later secrete IL-10. Thus, individual Th1 cells can contribute to the control of their own IFN-gamma expression by sequential expression of first IL-2, supporting their proliferation, and later IL-10, down-regulating the production of IFN-gamma-inducing monokines and limiting the pro-inflammatory effects of IFN-gamma.  相似文献   

17.
18.
19.
20.
SJL mice provide an interesting paradigm to examine the role(s) of APC in the differential induction of Th1 and Th2 cells. Immunization of young male SJL mice results in the preferential induction of Th2 cells, whereas Th1 cells are induced in age-matched female or older male SJL mice. The absence of Th1 responses in young male mice is associated with in vivo IL-4 and IL-10 down-regulating Mac-3+ APC priming of Th1 cells. The present report examines the mechanism of this APC-dependent induction of Th subsets. Examination of the surface expression of MHC class II, adhesion molecules (CD11a, CD11b, CD48, CD54, and CD102) or costimulatory molecules (CD24, CD80, and CD86) showed no differences between male- and female-derived Mac-3+ APC populations. In addition, no differences were detected in IL-1alpha, IL-1beta, IL-18, TNF-alpha, or IL-12 p35 mRNA expression. However, reduced expression of both IL-10 and IL-12 p40 mRNA were found in Mac-3+ cells from male mice compared with those in Mac-3+ cells from female mice. Anti-IL-4 or anti-IL-10 mAb treatment of young male donor mice eliminated the reduction of both IL-10 and IL-12 p40 mRNA, suggesting that the Th2 inducer phenotype is related to a decreased IL-12 secretion. Consistent with this idea, fewer IL-12 p40-secreting Mac-3+ cells were found in male mice compared with female mice, and treatment with rIL-12 resulted in the priming of Th1 cells in male mice. These data suggest that increased Th2 cytokines in vivo before encounter with Ag inhibit APC expression of IL-12, resulting in the preferential induction of Th2 cells in male SJL mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号