首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane hydrate equilibrium has been studied upon continuous heating of the water-hydrate-gas system within the temperature range of 275-300 K. This temperature range corresponds to equilibrium pressures of 3.15-55 MPa. The hydrate formation/dissociation experiments were carried out in a high-pressure reactor under isochoric conditions and with no agitation. A small amount of surfactant (0.02 wt% sodium dodecyl sulfate, SDS) was added to water to promote hydrate formation. It was demonstrated that SDS did not have any influence on the gas hydrate equilibrium, but increased drastically both the hydrate formation rate and the amount of water converted into hydrate, when compared with the experiments without surfactant. To understand and clarify the influence of SDS on hydrate formation, macroscopic observations of hydrate growth were carried out using gas propane as hydrate former in a fully transparent reactor. We observed that 10-3 wt% SDS (230 times less than the Critical Micellar Concentration of SDS) were sufficient to prevent hydrate particles from agglomerating and forming a rigid hydrate film at the liquid-gas interface. In the presence of SDS, hydrates grew mainly on the reactor walls as a porous structure, which sucked the solution due to capillary forces. Hydrates grew with a high rate until about 97 wt% of the water present in the reactor was transformed into hydrate.Our data on methane hydrate equilibrium both confirm already published literature data and complement them within the pressure range of 20-55 MPa.  相似文献   

2.
This paper details creation of methane sI hydrates that are much more stable at 1 atm and 268.2 K than any previously reported. Extraordinarily stable natural gas sII hydrates at 1 atm and 268.2-270.2 K are reported for the first time. Test innovations that achieved ultra-stabilities give insight into hydrate self-preservation mechanisms. Water-surfactant liquid solutions were used to nucleate hydrate crystals that adsorbed as extremely small particles on surfaces of high thermal conductivity. The small hydrate particles packed and consolidated symmetrically upon Al or Cu cylindrical surfaces, minimizing internal void spaces and fractures in the accumulated 250-400 g hydrate mass. Resulting hydrate stability window is 268.2-270.2 K at 1 atm. Methane sI, as well as natural gas sII, hydrates exhibit only minimal decomposition upon reducing confining system pressure to 1 atm in the 268.2-270.2 K stability window. Total gas that evolved after 24 h at 1 atm in the stability window typically amounted to less than 0.5% of originally stored gas, and this ultra-stability was shown to persist when the test was allowed to run 256 h before terminating. The entire methane sI or natural gas sII hydrate mass remains stable during pressure reduction to 1 atm, whereas previous reports defined hydrate anomalous stability for only about 50% of fractional hydrate remnants.  相似文献   

3.
This work reports solubility data of methane and carbon dioxide in 1,4 butylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at 303, 323, 373, 398 and 423.15 K and pressures up to 3.8 MPa for mixtures containing carbon dioxide and pressures up to 10.9 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using a technique based on the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature were observed. From the variation of solubility with temperature, the partial molar enthalpy and entropy change of each mixture were calculated.  相似文献   

4.
Supercritical water flow-through test facility (SCW-TF) for the study of hydrothermal fluids is described. The hydrodynamic behavior of the flow-through reactor is examined from ambient to supercritical water conditions by performing residence time distribution measurements. The results indicate that at 25 MPa, the employed reactor configuration exhibits plug flow behavior with a small extent of dispersion over the temperature range from 298 to 773 K. The experimentally determined effective volume of the reactor was used for the calculation of mean residence times of the fluid in the “hot zone” of the flow-through system. The thermal stability of hydrazine in aqueous solution was examined along the 25 MPa isobar from 473 to 725 K. The obtained first-order rate constant for the thermal decomposition of hydrazine increases from 3.73 × 10−4 s−1 at 473 K to about 0.31 s−1 at 725 K.  相似文献   

5.
Silver nanoparticles were synthesized via a reduction reaction carried out in a spinning disk reactor, to which an AgNO3 solution containing a protecting agent and an alkaline solution containing a reducing agent were added simultaneously and then recycled for a certain period. Besides starch, which has been used for producing silver particles above 10 nm, two more protecting agents, i.e. polyvinyl pyrrolidone (PVP) and hydroxypropyl methyl cellulose (HPMC), were tested in order to prepare silver particles below 10 nm. Then, the effects of other operating variables, such as rotation speed of disk, flow rates of reactant streams, concentration of reducing agent, and type and concentration of alkali, were investigated, aiming at a high production rate of silver nanoparticles with a size below 10 nm. The produced silver particles were recovered using a centrifuge, and the size did not change after redispersion. The sintering temperature of the 10 nm silver particles was greatly reduced.  相似文献   

6.
In this communication, the kinetic parameters of methane hydrate formation (induction time, quantity and rate of gas uptake, storage capacity (SC), and apparent rate constant) in the presence of sodium dodecyl sulfate (SDS), synthetized silver nanoparticles (SNPs), and mixture of SDS?+?SNPs have been studied. Experimental measurements were performed at temperature of 273.65?K and initial pressure of 7?MPa in a 460?cm3 stirred batch reactor. Our results show that adding SDS, SNPs and their mixture increases the quantity of gas uptake, water to hydrate conversion, and SC of methane hydrate formation, noticeably. Using 300?ppm SDS increases the SC and the quantity of methane uptake 615, and 770%, respectively, compared with pure water. Investigating the hydrate growth rate at the start of hydrate formation process shows that, using SNPs, SDS, and their mixture increases the initial apparent rate constant of hydrate rate, considerably. Our results show that the system of methane?+?water?+?SDS 500?ppm?+?SNPs 45?µM represents the maximum value of initial apparent rate constant, compared with other tested systems.  相似文献   

7.
A dual circulating fluidized bed pilot plant was operated in chemical looping reforming conditions at a scale of 140 kW fuel power with natural gas as fuel. A nickel-based oxygen carrier was used as bed material. The pilot plant is equipped with an adjustable cooling system. Three experimental campaigns have been carried out at 747 °C (1020 K), 798 °C (1071 K) and 903 °C (1176 K), respectively. In each campaign, the global stoichiometric air/fuel ratio was varied step-wise between 1.1 and the minimum value possible to keep the desired operating temperature when the cooling is finally switched off. The results show that the fuel reactor exhaust gas approaches thermodynamic equilibrium. The residual amount of methane left decreases with increasing fuel reactor temperature. Further, the oxygen in the air reactor can be completely absorbed by the solids as soon as the air reactor operating temperature is higher than 900 °C (1173 K). Even though no steam was added to the natural gas feed no carbon formation was found for global excess air ratios larger than 0.4.  相似文献   

8.
The methane hydrate heat of decomposition was directly measured up to 20 MPa and 292 K using a high pressure differential scanning calorimeter (DSC). The methane hydrate sample was formed ex-situ using granular ice particles and subsequently transferred into the DSC cell under liquid nitrogen. The ice and water impurities in the hydrate sample were reduced by converting any dissociated hydrate into methane hydrate inside the DSC cell before performing the thermal properties measurements. The methane hydrate sample was dissociated by raising the temperature (0.5-1.0 K/min) above the hydrate equilibrium temperature at a constant pressure. The measured methane hydrate heat of dissociation (H→W+G), ΔHd, remained constant at 54.44±1.45 kJ/mol gas (504.07±13.48 J/gm water or 438.54± 13.78 J/gm hydrate) for pressures up to 20 MPa. The measured ΔHd is in agreement with the Clapeyron equation predictions at high pressures; however, the Clausius-Clapeyron equation predictions do not agree with the heat of dissociation data at high pressures. In conclusion, it is recommended that the Clapeyron equation should be used for hydrate heat of dissociation estimations at high pressures.  相似文献   

9.
Methane sorption on ordered mesoporous carbon in the presence of water   总被引:1,自引:0,他引:1  
Xiuwu Liu  Jingwen Li  Wei Su 《Carbon》2006,44(8):1386-1392
An ordered mesoporous carbon was synthesized using SBA-15 as the template. The sorption isotherms of methane on the synthesized carbon material were collected. Its ordered structure was confirmed by the XRD, SEM and TEM examinations. The BET surface area is 1100-1200 m2/g, the total pore volume is 1.24-1.30 cm3/g, and the pore size distribution is very narrow and centered at 2-5 nm. As high as 41.2 wt.% of methane was stored per unit mass of carbon at 275 K and pressures less than 7 MPa in the presence of 3.86 times more water. This sorption amount is 31% higher than the largest sorption capacity reached by activated carbon in the presence of water, which was equal to or higher than the storage capacity of compression till 20 MPa. The enthalpy change corresponding to the sudden change of isotherms was equal to the enthalpy change of methane hydrate formation; therefore, the mechanism of the enhanced methane storage was considered due to the formation of methane hydrate in the porous carbon material.  相似文献   

10.
Methane/natural gas storage and delivered capacity for three different activated carbons in dry and wet conditions were measured. In all tests the temperature of the bed was maintained constant at 277.15 K and pressure was increased up to 10 MPa. Natural gas storage capacity was less than methane storage capacity in dry conditions for all the three activated carbons tested, while the gas delivery was almost the same. One of activated carbon tested (NC120) showed the possibility of hydrate forming for pressures higher than 4 MPa but the amount of gas stored still was less than the amount stored in dry conditions over the whole range of pressure. The analysis of the gas delivered at each pressure steps shows that considerable amount of heavy components do not come out from the bed even at very low pressures in both dry and wet condition tests. Repeatability of the sorption/desorption processes - vital for possible commercial/industrial use - has been examined over various cycles.  相似文献   

11.
Current models for hydrate formation in subsea pipelines require an arbitrary assignment of a subcooling criterion for nucleation. In reality hydrate nucleation times depend on both the degree of subcooling and the amount of time the fluid has been subcooled. In this work, differential scanning calorimetry was applied to study hydrate nucleation for gas phase hydrate formers. Temperature ramping and isothermal approaches were combined to explore the probability of hydrate nucleation for both methane and xenon. A system-dependent subcooling of around 30 K was necessary for hydrate nucleation from both guest molecules. In both systems, hydrate nucleation occurred over a narrow temperature range (2-3 K). The system pressure had a large effect on the hydrate nucleation temperature but the ice nucleation temperature was not affected over the range of pressures investigated (3-20 MPa). Cooling rates in the range of (0.5-3 K/min) did not have any statistically significant effect on the nucleation temperature for each pressure investigated. In the isothermal experiments, the time required for nucleation decreased with increased subcooling.  相似文献   

12.
The region between epitaxial graphene and the SiC substrate has been investigated. 4H-SiC (0 0 0 1) samples were annealed in a high temperature molecular beam epitaxy system at temperatures between 1100 and 1700 °C. The interfacial layers between the pristine SiC and the graphene layers were studied by X-ray photoelectron spectroscopy. Graphene was found to grow on the SiC surface at temperatures above 1200 °C. Below this temperature, however, sp3 bonded carbon layers were formed with a constant atomic Si concentration. C1s and Si2p core level spectra of the graphene samples suggest that the interface layer we observe has a high carbon concentration and its thickness increases during the graphitization process. A significant concentration of Si atoms is trapped in the interface layer and their concentration also increases during graphitization.  相似文献   

13.
Structure and thermal expansion of natural gas clathrate hydrates   总被引:2,自引:0,他引:2  
We report on the structural properties of natural gas hydrate crystals from the Sea of Okhotsk. Using powder X-ray diffraction (PXRD), it was determined that sediments from four locations contained type I gas hydrate, which encage mostly methane (96-98%) and a small amount of carbon dioxide. For all hydrates, the lattice constant was estimated to be at 113 K, which approximately equals that of pure methane hydrate. The result is in good agreement with the structure of artificially synthesized methane + carbon dioxide mixed-gas hydrates. These results suggest that the lattice constant of the natural gas hydrate does not change due to a change of CO2 gas content. In addition, the thermal expansion of the sampled hydrate was measured for the temperature range of 83-173 K, and the resulting density of the hydrate crystal at 273 K was estimated to be . These results are essential for applying natural gas hydrates as an alternative natural fuel resources.  相似文献   

14.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

15.
Experiments are performed in an entrained flow reactor to better understand the kinetic processes involved in biomass pyrolysis under high temperatures (1073-1273 K) and fast heating condition (>500 K s−1). The influence of the particle size (0.4 and 1.1 mm), of the temperature (1073-1273 K), of the presence of steam in the gas atmosphere (0 and 20 vol%) and of the residence time (between 0.7 and 3.5 s for gas) on conversion and selectivity is studied. Under these conditions, the particle size is the most crucial parameter that influences decomposition. For 1.1 mm particles, pyrolysis requires more than 0.5 s and heat transfer processes are limiting. For 0.4 mm particles, pyrolysis seems to be finished before 0.5 s. More than 70 wt% of gas is produced. Forty percent of the initial carbon is found in CO; less than 5% is found in CO2. The hydrogen content is almost equally distributed among H2, H2O and light hydrocarbons (CH4, C2H2, C2H4). Under these conditions, the evolution of the produced gas mixture is not very significant during the first few seconds, even if there seems to be some reactions between H2, the C2 and tars.  相似文献   

16.
This work summarises available measurements of laminar burning velocities in CH4 + H2 + O2 + N2 flames at atmospheric pressure performed using a heat flux method. Hydrogen content in the fuel was varied from 0% to 40%, amount of oxygen in the oxidiser was varied from 20.9% down to 16%, and initial temperature of the mixtures was varied from 298 to 418 K. These mixtures could be formed when enrichment by hydrogen is combined with flue gas recirculation. An empirical correlation for the laminar burning velocity covering a complete range of these measurements is derived and compared with experiments and other correlations from the literature.  相似文献   

17.
Batch experiments were conducted in a 10 kWth chemical-looping combustor for solid fuels using ilmenite, an iron titanium oxide, as the oxygen carrier with two solid fuels: a petroleum coke from Mexico and a bituminous coal from South Africa. The purpose of these batch tests was to attain detailed information on fuel conversion, complementary to previous continuous operation of the unit. At steady-state, a fuel batch of typically 25 g was introduced in the fuel reactor and gas concentrations were measured at the outlet of both air and fuel reactors. The fuel reactor was fluidized with steam and the amount of bed material was typically 5 kg. The fuel introduced devolatilizes rapidly while the remaining char is gasified and the resulting syngases H2 and CO react with the oxygen carrier. Operation involved testing at different fuel reactor temperatures from 950 to 1030 °C, and investigation of the influence of particle circulation between air and fuel reactors.The fuel conversion rate was increased at higher temperature: at 950 °C the instantaneous rate of conversion for petroleum coke averaged at 17.4%/min while at 1030 °C, the value was 40%/min. For the much more reactive South African coal, the averaged rate at 970 °C was 47%/min and increased to 101%/min at 1000 °C. For petroleum coke testing with particle circulation, the oxygen demand - defined as oxygen lacking to fully convert the gases leaving the fuel reactor - was typically 12-14% for the gasified char including H2S, in line with previous experiments with the same unit and fuel. If only syngases are considered, the oxygen demand for char conversion was 8.4-11%. Similar or even lower values were seen for the char of South African coal. This is in line with expectations, i.e. that it is possible to reach fairly high conversion, although difficult to reach complete gas conversion with solid fuel. It was also seen that the volatiles pass through the system essentially unconverted, an effect of feeding the fuel from above. Moreover, the oxygen demand for char conversion decreased with increasing temperature. Finally, the CO2 capture - defined as the proportion of gaseous carbon leaving the fuel reactor to total gaseous carbon leaving the system - decreased at higher particle circulation and a correlation between capture and circulation index was obtained.  相似文献   

18.
Sub-micron sized Zn2SiO4:Mn2+ phosphors particles were continuously synthesized in supercritical water with a flow reactor. Colloidal silica or sodium silicate was used as the Si source. Zn and Mn sources were chosen from their nitrates, sulfates, and acetates. The syntheses were carried out at temperatures from 400 to 500 °C, at pressures from 30 to 35 MPa, at NaOH concentrations from 0.014 to 0.025 M, and for residence times from 0.025 to 0.18 s. Sodium silicate formed α- and β-Zn2SiO4:Mn2+ phases regardless of the Zn and Mn sources, while colloidal silica formed phases dependent on the type of Zn and Mn sources used in addition to the use of alkali. As the reaction temperature increased, the crystallinity of α-Zn2SiO4:Mn2+ phase increased and the Mn substitution into the Zn sites of the α-Zn2SiO4 phase decreased. Of the conditions studied, the most highly crystalline α-Zn2SiO4:Mn2+ was produced at a temperature of 400 °C, a pressure of 30 MPa, a NaOH concentration of 0.14 M, and a residence time of 0.13 s with Zn and Mn sulfates and colloidal silica as starting materials. The α-Zn2SiO4:Mn2+ fine particles synthesized were round in shape, had an average diameter of 268 nm, and exhibited a green-emission with a peak wavelength of 524 nm.  相似文献   

19.
Dry water (DW) has been recently demonstrated to be an effective medium for methane storage in a hydrated form. Here, a series of experiments have been carried out on dry water methane hydrates (DW-MH) to investigate their formation and dissociation rates, storage capacity and structural characteristics. The result shows that the storage capacity of MH increases at least 10% by using DW relative to using surfactants like sodium dodecyl sulfate (SDS) solution. Also, it is found that controls on pressure-temperature (P-T) condition have influences on the induction and reaction time of DW-MH formation, i. e. the induction and reaction time are much shorter when the reaction cell is cooled to ~ 3 °C first. On the basis of Raman spectra, the hydration number is calculated as 5.934 ± 0.06 at different positions of the DW-MH, which suggests that the sample is very homogeneous. The dissociation process of the DW-MH sample exhibits a rapid release of methane gas at the first stage of dissociation. Although hydrate dissociation is prevented by the effect of self preservation, most methane gas has released from the hydrate, however, before the self preservation occur.  相似文献   

20.
Electroless ZnO deposition on a glass substrate from dissolved oxygen-free aqueous solutions containing Zn(NO3)2 and dimethylamineborane (DMAB) was examined to yield ZnO films applicable to a transparent conducting oxide (TCO). Concentration of Zn(NO3)2 was optimized in terms of crystal growth orientation and surface morphology using XRD and AFM, and that ranging from 0.065 to 0.075 M was found to provide well 〈0 0 0 1〉-oriented dense ZnO films. The polycrystalline ZnO films deposited with Zn(NO3)2 concentration of 0.07 M had a preferred 〈0 0 0 1〉 growth orientation and exhibited high visible transparency. Top-view and cross-sectional FE-SEM images revealed that hexagonal columnar ZnO grains with 200 nm in diameter and 290 nm in length grew almost vertically from a glass substrate. Heat treatment at 723 K under a reductive atmosphere was performed to increase the intrinsic carrier concentration in the ZnO film, and Hall effect measurements revealed low electrical resistivity of 4.7 × 10−3 Ω cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号