首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Polcar  M. Evaristo  A. Cavaleiro 《Wear》2009,266(3-4):388-392
Transition metal dichalcogenides (TMD) have been one of the best alternatives as low friction coatings for tribological applications, particularly in dry and vacuum environments. However, besides their deficient behavior in humid containing atmospheres, their extensive application has also been restricted due to their low load-bearing capacity. In order to overcome these problems, recently the alloying with C has been tried with the expectation of simultaneously improving the coatings hardness and reaching sliding contacting phases more convenient for achieving low friction in humid environments.The practical application of this concept was extensively studied with the W–S–C system, with the C addition being achieved either by reactive or co-sputtering processes. The best tribological results were obtained by co-sputtering from a C target embedded with an increasing number of WS2 pellets. Excellent results were reached from the more than one order of magnitude increase in the coatings hardness up to friction coefficients which are close to those of the references of self-lubricating coatings: TMD for dry or vacuum atmospheres or C-based coatings for terrestrial sliding conditions.Following the good results achieved with W–S–C system, other TMDs systems have been envisaged to be studied. The main focus was placed on the Mo–Se–C system.In this paper, the general comparison between W–S–C and Mo–Se–C coatings is presented. The main effort is pointed on the tribological behavior of both systems when tested by pin-on-disk against steel counterpart balls under different testing conditions: applied normal loads, temperatures and relative humidity of the atmospheres. Both coatings were deposited by co-sputtering from a C target with a varying number of TMD pellets which could lead to C contents in the films in the range from 30  up to 70 at.%. A Ti interlayer was interposed between the films and the substrates for improving the adhesion.Typically, W–S–C films are harder than Mo–Se–C films. From the tribological point of view, W–S–C films are more thermally stable than Mo–Se–C films although the friction coefficients of these last ones are lower when tested in humid containing atmospheres.  相似文献   

2.
The application of sand particles is a common method to improve the friction of aircraft tires on snow or ice covered runways. Hence, an understanding of the prevailing rubber–ice and sand–ice friction mechanisms is of practical interest. Rubber–ice and sand–ice friction measurements were made with a British Pendulum Tester at temperatures between ?22 and 0 °C and the effect of loose snow contamination on top of the ice was investigated. The results (the response of the instrument) were expressed in a sliding length averaged friction coefficient μBP. Close to the melting point the friction of rubber on ice was low and increased with decreasing ice temperature. Below ?5 °C, reasonably high friction levels (0.2<μBP<0.5) were obtained between rubber and ice, but the friction level dropped drastically by the presence of a very thin layer of snow. The sand–ice friction level was less dependent on ice temperature and clearly not as much affected by the presence of snow, compared to rubber–ice friction. The micromechanisms involved in rubber–ice and sand–ice frictions were investigated by the application of etching and replicating technique (ERT) developed for the examinations of the dynamics of dislocations in ice during deformation.  相似文献   

3.
A combined spectrometer is composed of a wide-aperture magnetic spectrometer with proportional chambers and a -spectrometer based on a Ge(Li) detector. The respective momentum and the angular resolutions of the magnetic spectrometer are FWHM/p(%) = 0.59p (GeV/c) + 1.1 and 0.5–1 mrad; its average efficiency for 0°–5° angles is 85%. The energy resolution of the -spectrometer is 8 and 16 keV for 0.5- and 2.0-MeV photons, respectively; the average angular acceptance is 1.5 msr.  相似文献   

4.
The knowledge of optical and dielectric properties of ferroelectric films, in particular, strontium–barium niobate films, in the terahertz spectral range is needed to use these films as a basis of active elements and structures for detection and control of terahertz radiation. The properties of strontium–barium niobate films with x = 0.5 grown on oriented sapphire substrates with a deposited electrode are studied by the method of terahertz time-domain spectroscopy in the spectral range of 0.2–1.3 THz. It is found that strontium–barium niobate films can be used to develop devices for detection and control of terahertz radiation.  相似文献   

5.
The tribological characteristics of the head–disk interface are investigated during load–unload for air and helium-filled drives as a function of the pitch static angle and the roll static angle between slider and disk. A custom-made experimental tester inside a sealed environmental chamber was used to determine the regions of “safe” pitch static angle and “safe” roll static angle in air and helium environment during the load–unload process. The presence of head–disk contacts during load–unload were evaluated by measuring the acoustic emission signal and the decrease in rotational speed of the spindle. Scanning electron microscopy and optical surface analysis were used to investigate wear of the slider and the redistribution of lubricant on the disk surface after 10,000 load–unload cycles. The results indicate that the tribological performance of the head–disk interface is improved in helium environment compared to air environment.  相似文献   

6.
The effects of nickel and carbon concentrations on the wear resistance of Fe–xNi–yC (x = 14–20 wt.%, y = 0.6–1.0 wt.%) were investigated with respect to strain energy initiation of the martensitic transformation and hardness. The strain energy needed to initiate the martensitic transformation increased with increasing carbon and nickel concentrations, except in 1.0 wt.% C alloys. The wear resistance of the material decreased with increasing carbon concentration up to 0.9 wt.% C. This effect is most likely due to decrement of the martensite volume fraction with increasing carbon concentration induced by the incremental strain energy required to begin the martensitic transformation. In the case of 1.0 wt.% C, the improved wear resistance may be due to carbide precipitation.  相似文献   

7.
The current research of autonomous vehicle motion control mainly focuses on trajectory tracking and velocity tracking. However, numerous studies deal with trajectory tracking and velocity tracking separately, and the yaw stability is seldom considered during trajectory tracking. In this research, a combination of the longitudinal–lateral control method with the yaw stability in the trajectory tracking for autonomous vehicles is studied. Based on the vehicle dynamics, considering the longitudinal and lateral motion of the vehicle, the velocity tracking and trajectory tracking problems can be attributed to the longitudinal and lateral control. A sliding mode variable structure control method is used in the longitudinal control. The total driving force is obtained from the velocity error in order to carry out velocity tracking. A linear time-varying model predictive control method is used in the lateral control to predict the required front wheel angle for trajectory tracking. Furthermore, a combined control framework is established to control the longitudinal and lateral motions and improve the reliability of the longitudinal and lateral direction control. On this basis, the driving force of a tire is allocated reasonably by using the direct yaw moment control, which ensures good yaw stability of the vehicle when tracking the trajectory. Simulation results indicate that the proposed control strategy is good in tracking the reference velocity and trajectory and improves the performance of the stability of the vehicle.  相似文献   

8.
In recent years with regard to the development of nanotechnology and neural stem cell discovery, the combinatorial therapeutic strategies of neural progenitor cells and appropriate biomaterials have raised the hope for brain regeneration following neurological disorders. This study aimed to explore the proliferation and neurogenic effect of PLGA and PLGA–PEG nanofibers on human SH-SY5Y cells in in vitro condition. Nanofibers of PLGA and PLGA–PEG biomaterials were synthesized and fabricated using electrospinning method. Physicochemical features were examined using HNMR, FT-IR, and water contact angle assays. Ultrastructural morphology, the orientation of nanofibers, cell distribution and attachment were visualized by SEM imaging. Cell survival and proliferation rate were measured. Differentiation capacity was monitored by immunofluorescence staining of Map-2. HNMR, FT-IR assays confirmed the integration of PEG to PLGA backbone. Water contact angel assay showed increasing surface hydrophilicity in PLGA–PEG biomaterial compared to the PLGA substrate. SEM analysis revealed the reduction of PLGA–PEG nanofibers' diameter compared to the PLGA group. Cell attachment was observed in both groups while PLGA–PEG had a superior effect in the promotion of survival rate compared to other groups (p < .05). Compared to the PLGA group, PLGA–PEG increased the number of Ki67+ cells (p < .01). PLGA–PEG biomaterial induced neural maturation by increasing protein Map-2 compared to the PLGA scaffold in a three-dimensional culture system. According to our data, structural modification of PLGA with PEG could enhance orientated differentiation and the dynamic growth of neural cells.  相似文献   

9.
Slip and fall accidents cause frequent occupational injuries. Despite recent evidence that boundary lubrication is relevant to slipping, few studies have examined the mechanisms that contribute to shoe?Cfloor friction in this lubrication regime. This study aims to identify the contributions of adhesion and hysteresis to friction in boundary lubrication. Three shoe materials (40 Shore A hardness polyurethane, 60 Shore A hardness rubber, and 70 Shore A hardness rubber), two floor materials (vinyl and marble), and six lubricants (water, 1.5?% detergent, 25?% glycerol?C75?% water, 50?% glycerol?C50?% water, 75?% glycerol?C25?% water, and canola oil) were tested at a single sliding speed (0.01?m?s?1). Dry adhesion and hysteresis were quantified for each of the shoe?Cfloor combinations and lubricated adhesion was quantified for all shoe?Cfloor-fluid combinations. The contribution of adhesion and hysteresis to shoe?Cfloor-lubricant friction was affected by both the shoe and floor material due to differences in hardness and roughness. Lubricated adhesion was complex and multifactorial with contributions from the shoe, fluid, shoe?Cfloor interaction, floor-lubricant interaction, and shoe-lubricant interactions. A simple regression model including two fluid coefficients and the dry adhesion friction force was able to predict 49?% of the lubricated adhesion friction variability.  相似文献   

10.
The effect of a strain-induced martensitic transformation on the cavitation erosion resistance and incubation time of Fe–10Cr–10Ni–xC (x = 0.3, 0.4, 0.5, and 0.6 wt%) austenitic steels has been studied. As the carbon concentration increased, mass loss in the alloys also increased, while the incubation period and the amount of transformed martensite decreased. In addition, the martensite volume fraction increased with increasing testing time and reached a saturation point for each test alloy. After the saturation point was reached, the martensite volume fraction did not change throughout the remainder of the test, even though the transformed martensite phase was removed. This result indicates that new martensite phases were formed immediately after the removal of the previously formed martensite. Martensitic transformation exerts significant effects on wear resistance and incubation time by steadily absorbing the cavity collapse energy.  相似文献   

11.
A method is proposed for increasing the load capacity and rigidity of roller–screw mechanisms by adjusting the screw surfaces. That permits the design of compact mechanisms such as automobile steering assemblies.  相似文献   

12.
The paper has described a model of the static load on the hip joint that takes into account the anthropological parameters and a mathematical model of the change in the resistance of the endoprosthesis under the influence of an external load at different rotation angles of the cup component. The theoretical studies have revealed the character of the changes and assessed the possible ranges of variations in the diagnostic parameter that are required to develop diagnostic equipment and methods for testing and interpreting diagnostic information during the tribotesting of individual types of implants.  相似文献   

13.
This study provides the mathematical models for modeling and analyzing the effects of air-cooling on the machinability of Ti–6Al–4V titanium alloy in the hard turning process. A cold air gun coolant system was used in the experiments and produced a jet of compressed cold air for cooling the cutting process. The air-cooling process seems to be a good environment friendly option for the hard turning. In this experimental investigation, the cutting speed, feed rate and cutting depth were chosen as the numerical factor; the cooling method was regarded as the categorical factor. An experimental plan of a four-factor (three numerical plus one categorical) D-optimal design based on the response surface methodology (RSM) was employed to carry out the experimental study. The mathematical models based on the RSM were proposed for modeling and analyzing the cutting temperature and surface roughness in the hard turning process under the dry cutting process and air-cooling process. Tool wear and chip formation during the cutting process were also studied. The compressed cooling air in the gas form presents better penetration of the lubricant to the cutting zone than any conventional coolants in the cutting process do. Results show that the air-cooling significantly provides lower cutting temperature, reduces the tool wear, and produces the best machined surface. The machinability performance of hard turning Ti–6Al–4V titanium alloy on the application of air-cooling is better than the application of dry cutting process. This air-cooling cutting process easily produces the wrinkled and breaking chips. Consequently, the air-cooled cutting process offers the attractive alternative of the dry cutting in the hard turning process.  相似文献   

14.
The high pressure die casting (HPDC) process has achieved remarkable success in the manufacture of aluminum–silicon (Al–SI) alloy components for the modern metal industry. Mathematical models are proposed for the modeling and analysis of the effects of machining parameters on the performance characteristics in the HPDC process of Al–SI alloys which are developed using the response surface methodology (RSM) to explain the influences of three processing parameters (die temperature, injection pressure and cooling time) on the performance characteristics of the mean particle size (MPS) of primary silicon and material hardness (HBN) value. The experiment plan adopts the centered central composite design (CCD). The separable influence of individual machining parameters and the interaction between these parameters are also investigated by using analysis of variance (ANOVA). With the experimental values up to a 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of both the mean particle size of primary silicon and its hardness value. Two main significant factors involved in the mean particle size of primary silicon are the die temperature and the cooling time. The injection pressure and die temperature also have statistically significant effect on microstructure and hardness.  相似文献   

15.
In this paper, the effects of rare earth addition and electromagnetic stirring on the microstructure and the mechanical properties of hypereutectic Al–Si alloys have been reported. Hypereutectic Al–Si alloy was prepared using liquid metallurgy route and modified with the addition of cerium oxide. To control the structure, slurry of hypereutectic Al–Si alloy was subjected to electromagnetic stirring before pouring into the mould. It was observed that the addition of cerium oxide (0.2 wt.%) refined the primary silicon particles and modified the eutectic silicon particles. Further, the electromagnetic stirring of the hypereutectic Al–Si alloy reduced the average size of primary silicon particles, from 152?±?9 to 120?±?6 μm, and the length of β-intermetallic compounds decreased from 314?±?12 to 234?±?10 μm. Similarly, the application of electromagnetic stirring on cerium oxide-modified hypereutectic Al–Si alloy also reduced the average size of primary silicon particles from 98?±?5 to 76?±?4 μm and the average length of β-intermetallic compounds from 225?±?7 to 203?±?5 μm. Mechanical properties namely tensile strength, ductility and hardness of the alloys were improved with electromagnetic stirring and addition of cerium oxide appreciably.  相似文献   

16.
This study investigates the effect of titanium and nitrogen elements on the microstructures and wear behaviors of medium carbon Fe–B cast alloy. The as-cast microstructures of Fe–B cast alloy consist of the eutectic boride, pearlite, and ferrite. Moreover, the as-cast eutectic boride structures are greatly refined when titanium and nitrogen are added. The boride area fraction, average boride area, Rockwell hardness, etc., are also investigated systemically. The wear behaviors of medium carbon Fe–B cast alloy are studied by a three-body abrasive wear tester. The results show that the wear weight loss of Fe–B cast alloy with titanium and nitrogen elements is lower than that of the ordinary Fe–B cast alloy. Meanwhile, the wear mechanism of Fe–B cast alloy with different titanium and nitrogen concentrations is described and analyzed.  相似文献   

17.
Computational methods were used to analyse the elasto-hydrodynamic lubrication of a complex rotor–bearing system. The methodology employed computational fluid dynamics (CFD), based on the Navier–Stokes equation and a fluid–structure interaction (FSI) technique. A series of models representing the system were built using the CFD–FSI methodology to investigate the interaction between the lubrication of the fluid film, and elastic dynamics of the rotor and journal bearing. All models followed an assumption of isothermal behaviour. The FSI methodology was implemented by setting nodal forces and displacements to equilibrium at the fluid–structure interface, therefore allowing the lubrication of the fluid and the elastic deformation of structures to be solved simultaneously. This is significantly different to the more common techniques—such as the Reynolds equation method—that use an iterative solution to balance the imposed load and the force resulting from the pressure of the fluid film to within a set tolerance. Predictions using the CFD–FSI method were compared with the results of an experimental study and the predictions from an ‘in-house’ lubrication code based on the Reynolds equation. The dynamic response of the system was investigated with both rigid and flexible bodies for a range of different bearing materials and dynamic unbalanced loads. Cavitation within the fluid film was represented in the CFD–FSI method using a simplified phase change boundary condition. This allowed the transition between the liquid and vapour phases to be derived from the lubricant’s properties as a function of pressure. The combination of CFD and FSI was shown to be a useful tool for the investigation of the hydrodynamic and elasto-hydrodynamic lubrications of a rotor–bearing system. The elastic deformation of the bearing and dynamic unbalanced loading of the rotor had significant effects on the position of its locus.  相似文献   

18.
This article deals with the effect of extrusion on the microstructures and tribological properties of powder metallurgy–fabricated copper–tin composites containing MoS2 by optical microscopy, scanning electron microscopy (SEM), and tribotesting. The extrusion decreases the number of pores and increases the density and hardness and thus improves the tribological properties of the composites. Results demonstrated that abrasion is the dominant wear mechanism in all extruded composites, whereas a combination of adhesion and delamination appears to be the governing mechanism for prepared composites. The developed hot-extruded composites exhibited lower coefficient of friction and wear rates compared to prepared composites. Design Expert software was used to develop contour map.  相似文献   

19.
In this work, one ternary Al–40Zn–3Cu and seven quaternary Al–40Zn–3Cu–(0.25–5)Si alloys were synthesized by permanent mould casting. Their microstructure, mechanical and lubricated wear properties were investigated using appropriate test apparatus and techniques. As the silicon content increased the hardness of the alloys increased, but their elongation to fracture decreased. Tensile strength of the alloys decreased with increasing silicon content following a sharp decrease and a slight increase. Among the silicon-containing quaternary alloys the highest and the lowest tensile strength values (348 and 305 MPa) were obtained with the Al–40Zn–3Cu–2Si and Al–40Zn–3Cu–5Si alloys, respectively, while the base alloy (Al–40Zn–3Cu) exhibited a tensile strength of 390 MPa. However, the volume loss due to wear of the alloys increased with increasing silicon content after showing an initial increase and a sharp decrease. The lowest wear loss was obtained with the alloy containing approximately 2% Si which has the highest tensile strength among the quaternary alloys containing more than 0.25% Si. Wear surfaces of the alloys were characterized mainly by smearing indicating that adhesion is the dominant wear mechanism for the experimental alloys.  相似文献   

20.
Dry sliding friction and wear properties of ternary Al–25Zn–3Cu and quaternary Al–25Zn–3Cu–(1–5)Si alloys were investigated using a pin-on-disc test machine after examining their microstructures and mechanical properties. An alloy (Al–25Zn–3Cu–3Si), which exhibited the highest tensile and compressive strengths, was subjected to T7 heat treatment. Surface and subsurface of the wear samples were investigated using scanning electron microscopy (SEM). The hardness and both tensile and compressive strengths of the alloys increased with increasing silicon content, but the trend reversed for the latter ones above 3% Si. It was observed that T7 heat treatment reduced the hardness and both tensile and compressive strengths of the Al–25Zn–3Cu–3Si alloy, but increased its elongation to fracture greatly. Three distinct regions were observed underneath the surface of the wear samples of the Al–25Zn–3Cu–3Si alloy. The formation of these regions was related to the heavy deformation of surface material and mixing, oxidation and smearing of wear material. Al–25Zn-based ternary and quaternary alloys in both as-cast and heat-treated conditions were found to be superior to SAE 660 bronze as far as their mechanical and dry sliding wear properties are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号