首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了稻草及不同温度热解半焦颗粒在内径100 mm、高1000 mm的有机玻璃流化床中的流化特性. 结果表明,稻草颗粒无法单独流化,而其热解半焦颗粒可单独流化;半焦颗粒的最小流化速度随粒径增大而增大,与床层高度无关,筛分粒径为0.45~0.9, 0.18~0.45, 0.125~0.18 mm的半焦颗粒的最小流化速度分别为0.19, 0.16, 0.14 m/s;300~550℃温度范围内稻草热解半焦颗粒的流化特性无明显区别;半焦与稻草颗粒混合流化时,稻草颗粒不大于20%(w)时床层有较好的流化质量,混合颗粒的最小流化速度都随混合颗粒中稻草含量增大而增大.  相似文献   

2.
通过对大颗粒流化曲线及床层高度的测试对大颗粒流化床的流化过程进行了研究。结果显示,大颗粒的流态化过程是一个渐进的过程,整个流化过程可以分为:床层高度恒定、颗粒位置调整、表面颗粒运动、节涌波动和完全流化5个阶段。由于颗粒自身特性的影响,导致大颗粒流化过程中的各个特征速度(如起始鼓泡流化速度和完全流化速度)产生了有别于小颗粒流化床的特性。  相似文献   

3.
本文在振动流化床中研究床层膨胀和颗粒的起始流化速度,分别研究颗粒物性、振动特性(频率、振幅)和静止床层高度对它们的影响,根据不同的振动条件下Geldart’A、B、D类13种物料起始流化速度的实验结果,关联了实验条件下起始流化速度的计算式,此计算式对振动流化床的设计具有指导意义。  相似文献   

4.
Experiments show that the minimum fluidization velocity of particles increases as the diameter of the fluidization column is reduced, or if the height of the bed is increased. These trends are shown to be due to the influence of the wall. A new, semicorrelated model is proposed, which incorporates Janssen's wall effects in the calculation of the minimum fluidization velocity. The wall friction opposes not only the bed weight but also the drag force acting on the particles during fluidization. The enhanced wall friction leads to an increase in the minimum fluidization velocity. The model predictions compare favorably to existing correlations and experimental data. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

5.
Effects of acoustic vibration on nano and sub-micron powders fluidization   总被引:1,自引:0,他引:1  
Fluidization of nano and sub-micron powders with and without acoustic vibration was investigated. The effects of sound pressure level and frequency were studied. Loudspeakers located under the distributor plate were used as the sound source to disintegrate larger agglomerates concentrated at the bottom of the bed. Nanoparticles showed fluid-like behavior similar to Geldart's A group and application of sound vibration improved their fluidization quality. Submicron particles were hard to fluidize and their fluidization quality was partially improved by sound excitation. Bed compaction, caused by rearranging of the agglomerates, was observed for submicron particles at low gas velocities while the bed was fixed. Nanoparticles did not experience any bed compaction. Sound vibration led to a decrease in minimum fluidization velocity and an increase in bed pressure drop and bed expansion for both types of particles. The fluidization quality of both particles increased at low frequencies, while the reverse was observed at higher frequencies. Fluidization of these particles was improved by increasing sound pressure level. There was a critical sound pressure level of 110 dB, below which the effect of sound vibration was insignificant. A novel technique was employed to find the apparent minimum fluidization velocity from pressure drop signals.  相似文献   

6.
气固搅拌流化床压力脉动的小波分析   总被引:5,自引:4,他引:1       下载免费PDF全文
王嘉骏  张文峰  冯连芳  顾雪萍 《化工学报》2006,57(12):2854-2859
在内径188 mm、静床高400 mm的搅拌流化床中,采用Geldart D类颗粒为实验物料,通过小波分析研究了不同气速和搅拌桨转速下搅拌流化床的压力脉动行为.实验发现,搅拌桨的转动作用促使在普通流化床中不易散式流态化的D类颗粒形成了散式流态化.随着气速的增加,第1尺度的小波能量特征值在某一个气速范围内发生急剧变化,进而提出了将该气速范围的下限和上限分别定义为临界鼓泡速度和充分鼓泡速度的判据.随搅拌转速的增加,散式流态化的气速操作范围线性增加.在鼓泡流态化状态下,气速是流化床气泡行为的主导因素,搅拌桨转速的增加对气泡产生的频率无明显影响但可使气泡的直径变小.  相似文献   

7.
利用内径150 mm的D型有机玻璃流化床模型,对澳矿、巴西矿、北方矿和钒钛矿典型铁矿粉的流化特性进行了实验研究,获得了其流化特性曲线、初始流化速度和最大床层压降,并将初始流化速度的实测值和理论计算值进行了比较分析. 结果表明,矿粉粒度是影响其流化特性的最主要因素,粒径越大,床层所需要的初始流化速度越大,实测值和理论估算值基本相符;粒度小于0.125 mm钒钛矿流动性较差,在流化过程中易出现沟流现象;粒度范围较宽的矿粉,完全流态化时,细矿粉随气流夹带逸出明显;在粒度相同的情况下,几种不同的铁矿粉的开始流化速度接近,而床层压降有较大差异,巴西矿的床层压降明显大于其他三种铁矿粉. 最大床层压降的最小值均出现在粒度为0.25~0.425 mm,为铁矿粉流态化还原过程中较适宜的粒度范围.  相似文献   

8.
The purpose of this study is to present some new data to estimate minimum fluidization velocity (umf) in a two-dimensional bed. When investigating fluidodynamics with a fluidized bed, a fixed normalised parameter is needed. This parameter stands for the degree of mixing and its outcome between the phases. It is well known that the minimum fluidization velocity is normally used to represent the transition from fixed to fluidized bed conditions. Fluidization experiments with different height and weight bed and for different particle sizes were carried out in a two-dimensional fluidized bed. Minimum fluidization velocity was found to be a function of bed weight, particle diameter and column width.  相似文献   

9.
丁洁 《当代化工》2016,(1):54-56
在内径0.152 m,高2.5 m的气-液-固三相逆流化床中系统研究了动力学特性。获得了气体和液体速度及聚乙烯和聚丙烯颗粒密度对各相含率和最小液体流化速度的影响规律。研究发现随着气体速度的增加,液体最小流化速度降低;随着气体或液体速度增加,气体、液体和固体含率均增加。  相似文献   

10.
The behaviour of several kinds of group B particles ranging from 100 μm to 600 μm was studied in a sound wave vibrated fluidized bed (SVFB). The fluidized bed consists of a transparent Plexiglas tube that is 54 mm i.d. × 1 m high. A speaker mounted at the top of the bed was supplied by a function generator with square waves and was used to generate the sound as the source of vibration of the fluidized bed. The influence of the particle size, density of particles and sphericity of particles on the minimum fluidization velocity, pressure fluctuations and bubble rise velocity in the SVFB was investigated. The minimum fluidization velocity decreased as the sound energy increased. When the sound energy was strong enough and greater than the critical power, the minimum fluidization velocity would approach the same value regardless of the degree of resonance (DOR) value if the particles were in spherical shape. For non-spherical shape particles the minimum fluidization velocity was the function of the DOR value if the power was greater than the critical power. For the middle particle size range, the standard deviation of pressure fluctuations in an SVFB became lower than the one without the effect of sound in high superficial gas velocity range, but the result was reverse for the low superficial velocity; for the large particle size range, the standard deviation of pressure fluctuations in an SVFB was larger than the one without the effect of sound. The sound could also reduce the bubble rise velocity in an SVFB.  相似文献   

11.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

12.
Jimin Kim 《Powder Technology》2006,166(3):113-122
The effect of agitation on the fluidization characteristics of fine particles was investigated in a fluidized bed with an I.D. of 6 cm and a height of 70 cm. The agitator used was of the pitched-blade turbine type and phosphor particles were employed as the bed material. The particle size was 22 μm and the particle density was 3938 kg/m3. The effect of the agitation speed on the fluidization characteristics was examined by statistical (average absolute deviation (AAD), probability density function (PDF)), spectral (auto-correlation function, power spectrum) and chaos analysis (strange attractor, Hurst exponent, correlation dimension). The results showed that smoother fluidization was observed with increasing agitation speed, because the agglomeration and channeling were reduced by the mechanical agitation. The signals of the pressure drop fluctuation had the shape of a short-term correlation with different agitation speed. The void fraction increased with increasing agitation speed at the constant fluidizing gas velocity.  相似文献   

13.
微小流化床流化特性分析   总被引:4,自引:2,他引:2  
在内径4.3, 5.5, 10.5, 15.5, 20.5和25.5 mm的6个气固微小流化床中,考察了石英砂和不同粒径的催化裂化催化剂的流化特性. 研究了流化床尺寸、颗粒及流化介质物性对微小流化床床层压降及最小流化速度的影响. 结果表明,不同颗粒及流化介质的微小流化床床层压降实验值均小于计算值. 传统的压降关联式不能直接用于微小流化床. 其最小流化速度随床径减小呈指数增大,在高径比1:1~3:1范围内,最小流化速度随料高增大近似呈线性增大,其增大速度随床径增大而变缓. 基于实验数据得出了微小流化床最小流化速度的关联式.  相似文献   

14.
王克英 《当代化工》2012,(9):927-929
在环隙流化(AFB)床中,应用实验测量技术研究了床层压降和床层膨胀曲线以及最小流化速度的变化规律.研究结果显示,在升速流化时,随着气速增大,床层压降和床层膨胀比也随之增大,当气速超过一定值时,纳米TiO2颗粒完全流化,压降波动和床层膨胀比趋于平稳.最小流化速度随着纳米TiO2质量的增加而增大.  相似文献   

15.
Studies in the expansion behaviour of tapered fluidized bed systems are important for specifying the height of the bed. Data have been obtained on the expanded heights of tapered fluidized beds and bed expansion ratios for spherical and non-spherical particles have been calculated. Based on dimensional analysis, models have been developed as a function of geometry of tapered bed, static bed height, particle diameter, density of solid and gas and superficial velocity of the fluidizing medium. The data used to derive the models cover a wide range of operating conditions, with varying fluidization velocities. Effects of static bed height, particle diameter, density, tapered angle and superficial gas velocity over minimum fluidization velocity on bed expansion ratios have been investigated experimentally. A comparison has been made between the calculated values of bed expansion ratios using proposed models and the experimental data. It has been seen that calculated values by models agree well with the experimental values. Models have also been compared with literature data of conventional bed and found its applicability at higher gas velocities with good accuracy.  相似文献   

16.
Gas–solid fluidization involving small amounts of liquid is simulated using a CFD‐DEM model. The model tracks the amount of liquid on each particle and wall element and incorporates finite rates of liquid transfer between particles and pendular liquid bridges which form between two particles as well as between a particle and a wall element. Viscous and capillary forces due to these bridges are modeled. Fluidization–defluidization curves show that minimum fluidization velocity and defluidized bed height increase with Bond number (Bo), the ratio of surface tension to gravitational forces, due to cohesion and inhomogeneous flow structures. Under fluidized conditions, hydrodynamics and liquid bridging behavior change dramatically with increasing Bo, and to a lesser extent with capillary number, the ratio of viscous to surface tension forces. Bed fluidity is kept relatively constant across wetting conditions when one maintains a constant ratio of superficial velocity to minimum fluidization velocity under wet conditions. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5290–5302, 2017  相似文献   

17.
This study describes the particle characteristics and fluidized hydrodynamics of peat granules. Peat granules, moistened with water, are a potential packing material in a gas–solid fluidized bed bioreactor used for treating air pollution. Information on the fluidization of wet peat granules is lacking. In order to advance this new type of bioreactor and to scale up its design for industrial use, fluidization studies of suitable packing material are required. Using abiotic experiments, three sizes of peat granules have been fluidized with air and fluidization characteristics were observed at different superficial gas velocities. Relative to other biomass particles, peat granules have a high particle density and sphericity, which contributes to favourable fluidization behaviour, without gas channelling. Fluidization experiments demonstrate that as the mean size of peat particles increased, minimum fluidization velocity increased. Increasing the moisture content of the peat granules resulted in a transition from bubbling bed fluidization to poor fluidization behaviour. Other types of moist biomass particles such as sawdust are difficult to fluidize and typically exhibit Geldart group C behaviour. In contrast, it was observed that wet peat granules could be fluidized in a bubbling bed regime, typical of group B particles.  相似文献   

18.
The temporal and cross-sectional distributions of particles in a 127 mm diameter fluidized bed have been obtained using a new generation, high-speed electrical capacitance tomography. Two planes of eight electrodes were used and mounted at 160 and 660 mm from the gas distributor which was a 3 mm thick porous plastic plate (maximum pore size of 50-70 μ m). 3 mm diameter, nearly-spherical polyethylene granules made up the bed. Experiments at sampling frequencies of 200-2000 cross-sections per second and gas superficial velocities from just below the minimum fluidization to 83% above minimum fluidization velocities were used. The time series of the cross-sectional average void fractions have been examined both directly and in amplitude and frequency space. The last two used probability density functions and power spectral densities. The information gathered shows that the fluidized bed was operating in the slugging mode, which is not surprising given the size of the particles. It has been found that an increase in the excess gas velocity above the minimum fluidization velocity resulted in an increase in the mean void fraction, an increase in the length and velocity of the slug bubbles as well as the bed height, and a slight decrease in the slug frequency. The results are presented in a level of detail suitable for comparison with later numerical simulation.  相似文献   

19.
Very little data of minimum fluidization velocity at elevated temperatures of tapered bed are available in the literature. This study was undertaken to provide some data under elevated temperature conditions in tapered bed. Data on minimum fluidization velocity have been obtained experimentally for temperature up to 800 °C in case of 0.5 mm diameter of sand particles and up to 500 °C in case of 1 mm diameter of glass beads in tapered bed. An equation valid for the bed has been developed in terms of Archimedes number and Reynolds number. The experimental values for minimum fluidization velocity at elevated temperatures have been compared with the calculated values obtained from present equation and from earlier equations developed by other authors for ambient conditions in conventional (cylindrical) bed and tapered bed. Fairly good agreement was found to exist between the calculated (from present equation) and the experimental values.  相似文献   

20.
Fluidization, bed expansion, pressure drop, and hydraulic characteristics of beds of natural zeolite particles have been studied for their potential application in the treatment of aqueous waste. The measurements in the bed of zeolite particles are compared with regular shaped glass beads. The bed of zeolite particles required to be fully fluidized before getting reproducible pressure measurements in the bed. This is attributed to their wider size distribution and resulting segregation. The mean size of the particles ranged from 550 to 900 µm. Minimum fluidization velocity was determined from pressure measurements below the distributor and compared with values from pressure measurements inside the bed. Experiments conducted with slurry out the bed showed that it could be easily drained in expanded mode from the column through a small diameter opening near the bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号