首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this paper are to quantify the effect of Marangini convection on the absorption performance for the ammonia–water absorption process, and to visualize Marangoni convection that is induced by adding a heat transfer additive, n-octanol. A real-time single-wavelength holographic interferometer is used for the visualization using a He–Ne gas laser. The interface temperature is always the highest due to the absorption heat release near the interface. It was found that the thermal boundary layer (TBL) increased faster than the diffusion boundary layer (DBL), and the DBL thickness increased by adding the heat transfer additive. At 5 s after absorption started, the DBL thickness for 5 mass% NH3 without and with the heat transfer additive was 3.0 and 4.5 mm, respectively. Marangoni convection was observed near the interface only in the cases with heat transfer additive. The Marangoni convection was very strong just after the absorption started and it weakened as time elapsed. It was concluded that the absorption performance could be improved by increasing the absorption driving potential (xvbxvi) and by increasing the heat transfer additive concentration. The absorption heat transfer was enhanced as high as 3.0–4.6 times by adding the heat transfer additive that generated Marangoni convection.  相似文献   

2.
To avoid rivulet flow in compact absorbers, which consist of compact heat exchanger plates, the surface tension of the ammonia-water solution has to be reduced by surfactants. The influence of these additives on the absorption of ammonia into water is investigated for two anionic tensides, two non-ionic tensides and the alcohol 1-octanol in a stagnant pool measuring cell. All four tensides had no influence on the absorption in the concentration range investigated (0.25–0.91 wt%), although they were able to reduce the surface tension of water down to 30mN m−1. In order to increase the mass transfer, 1-octanol was used in three concentrations, which probably lead to a convection in the liquid layer, called Marangoni convection. The experiments have shown that the presence of surfactant islands is not necessary to induce Marangoni turbulence. The best result was achieved with 50 ppm 1-octanol dissolved in water.  相似文献   

3.
Thick film H2 sensors were fabricated using SnO2 loaded with Ag2O and PdOx. The composition that gave highest sensitivity for H2 was in the wt.% ratio of SnO2:Ag2O:PdOx as 93:5:2. The nano-crystalline powders of SnO2–Ag2O–PdOx composites synthesized by sol–gel method were screen printed on alumina substrates. Fabricated sensors were tested against gases like H2, CH4, C3H8, C2H5OH and SO2. The composite material was found sensitive against H2 at the working temperature 125 °C, with minor interference of other gases. H2 gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on SnO2–Ag2O–PdOx nanocrystalline system exhibited high performance, high selectivity and very short response time to H2 at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of H2.  相似文献   

4.
盛强  邢玉明 《复合材料学报》2014,31(6):1566-1572
采用SEM和X射线能谱仪分析方法研究了50次热循环后Ba(OH)2·8H2O与铝合金和紫铜的相容性,发现Ba(OH)2·8H2O对铝合金有一定的腐蚀性,与紫铜具有优良的相容性.以简单的真空吸附填充方法制备了Ba(OH)2·8H2O/泡沫铜相变复合材料.搭建了含和未含泡沫铜相变储能装置实验台,对Ba(OH)2·8H2O/泡沫铜相变复合材料进行室温下稳态和瞬态的传热实验.结果表明:Ba(OH)2·8H2O/泡沫铜相变复合材料比纯Ba(OH)2·8H2O传热速率快,导热性能好,有效地降低了Ba(OH)2·8H2O的过冷度.高温恒温箱的传热实验表明:Ba(OH)2·8H2O/泡沫铜相变复合材料的蓄热能力随外界环境温度的升高而降低,当环境温度高于材料相变点温度时,应考虑对相变复合材料采取一些保温措施.  相似文献   

5.
TiO2 films were grown by atomic layer deposition on Mo electrodes in order to elucidate the dominating conductance mechanism and its dependence on the growth chemistry. TiCl4 and Ti(OC2H5)4 served as titanium precursors, and H2O or H2O2 as oxygen precursors. The films grown at lower temperatures were amorphous. With increasing growth temperatures the crystallization first started in the TiCl4–H2O process. The films grown in this process were clearly leakier compared to the films grown from Ti(OC2H5)4 and H2O and from Ti(OC2H5)4 and H2O2. In the Ti(OC2H5)4-based processes, the application of H2O2 instead of H2O resulted in the films with considerably lowered conductivity, although structural differences in these films were insignificant. Space–charge-limited currents were prevailing in all our amorphous Mo–TiO2–Al packages. Measurements at different temperatures suggested quite high trap densities likely due to the presence of impurities and structural disorder, while the strong differences in conductivity seemed to be due to different densities of gap states.  相似文献   

6.
The objectives of this paper are to visualize the bubble behavior for an ammonia–water absorption process, and to study the effect of key parameters on ammonia–water bubble absorption performance. The orifice diameter, orifice number, liquid concentration and vapor velocity are considered as the key parameters. The departing bubbles tend to be spherical for surface tension dominant flow, and the bubbles tend to be hemispherical for inertial force dominant flow. A transition vapor Reynolds number is observed at a balance condition of internal absorption potential (by the concentration difference) and external absorption potential (by the vapor inlet mass flow rate). As the liquid concentration increases, the transition Reynolds number and the initial bubble diameter increase. The initial bubble diameter increases with an increase of the orifice diameter while it is not significantly affected by the number of orifices. Residence time of bubbles increases with an increase in the initial bubble diameter and the liquid concentration. This study presents a correlation of initial bubble diameter with ±20% error band. The correlation can be used to calculate the interfacial area in the design of ammonia-water bubble absorber.  相似文献   

7.
The corrosion of magnesia–chrome (MgO–Cr2O3) brick in molten MgO–Al2O3–SiO2–CaO–FetO slag has been characterized using a dynamic rotary slag corrosion testing for various test cycles at 1650 °C. The open porosity decreases from 15.3 to 4.0% for three cycles, then it gradually increases from 4.0 to 4.8% when the test is extended to nine cycles, in which the permeating depth of the slag maintains at about 20 mm. The XRD pattern of the permeated layer shows the presence of the MgO, MgCr2O4 and CaMgSiO4 phases. In the interior of the permeating layer cracks are formed and corrosion starts at the pores and cracks of MgO and decreases gradually. However, at 20–40 mm beneath the permeated layer edge, different shapes of MgO particles are found.  相似文献   

8.
In this article, experimental analysis was performed for ammonia–water falling film absorption process in a plate heat exchanger with enhanced surfaces such as offset strip fin. This article examined the effects of liquid and vapor flow characteristics, inlet subcooling of the liquid flow and inlet concentration difference on heat and mass transfer performance. The inlet liquid concentration was selected as 5%, 10% and 15% of ammonia by mass while the inlet vapor concentration was varied from 64.7% to 79.7%. It was found that before absorption started, there was a rectification process at the top of the test section by the inlet subcooling effect. Water desorption phenomenon was found near the bottom of the test section. It was found that the lower inlet liquid temperature and the higher inlet vapor temperature, the higher Nusselt and Sherwood numbers are obtained. Nusselt and Sherwood number correlations were developed as functions of falling film Reynolds Re1, vapor Reynolds number Rev, inlet subcooling and inlet concentration difference with ±15% and ±20% error bands, respectively.  相似文献   

9.
Increasing the oxygen or the carbon dioxide concentration in the argon-based shielding gas leads to an increase in the weld metal oxygen content when the oxygen or carbon dioxide concentration is to be lower than 0.6 vol.% in the shielding gas. However, when the O2 or CO2 concentration is higher than 0.6 vol.% in the Ar-based shielding gas, the weld metal oxygen is maintained around 200 ppm–250 ppm. An inward Marangoni convection mode in the weld pool occurs when the weld metal oxygen content is more than 100 ppm. When it is lower than 100 ppm, the Marangoni convection would change to the outward direction and the weld shape varies from a deep narrow to a shallow wide shape. The effective ranges of O2 and CO2 concentrations for deep penetration are same. A heavy layer of oxides is formed when the O2 or CO2 concentration in the shielding gas is more than 0.6 vol.%. Based on the thermodynamic calculation of the equilibrium reactions of Fe, Si, Cr and Mn with oxygen in liquid iron for the oxide products, FeO, SiO2, Cr2O3 and MnO and the experimental oxygen content in the weld metal, Cr2O3 and SiO2 oxides are possibly formed at the periphery area of the liquid pool surface under the arc column during the welding process. One model is proposed to illustrate the role of the oxide layer on the Marangoni convection on the pool surface at elevated temperature. The heavy oxide layer inhibited the fluid flow induced by the Marangoni convection and also became a barrier for the oxygen absorption into the molten weld pool.  相似文献   

10.
The paper proposes an original linear phenomenological theory (Ph T) of evolution physical mono-, bi- and particular polycomponent gas–liquid interactions with non-ideal mixture. The expressions of the phenomenological factors (entropy source, force, coefficient and coupled heat and mass transfer currents) are deduced. The theory is particularized to the NH3/H2O and other gas–liquid systems used in the thermal absorption technology. The work's conclusions are listed next. The paper raises the problem of ammonia bubble absorption which is difficult to answer with current theory of interface mass transfer and absorption as a surface phenomenon. The heat and mass transfer at the gas–liquid interface is governed by the thermodynamic force, which applies also to solid–liquid, solid–gas, or liquid–liquid, gas–gas type interactions and continuous or discontinuous media. The paper mentions a postulate referring to the force behavior approaching an ideal point, previously formulated by the author. According to its consequence, the mass and heat currents suffer an ideal point approaching (i.p.a.) effect, not mentioned so far in the specialized literature, consisting in a continuous increase of their absolute value by several percent (for a pure component), to several hundred times (for a binary system) when the interacting system approaches an ideal state, as compared to the values of states which are far from the same ideal point. In this way, “far from equilibrium” becomes synonymous to “low interaction”. The classic assessment of the interface mass transfer by analogy with heat transfer lacks basic physics. The (Ph T) satisfactorily explains the problem of ammonia bubble absorption. Absorption is a mass phenomenon, not a surface one. An intensive way of improving absorption is emphasized, which seeks to promote the i.p.a. effect appearance rather than the extensive way currently used, based on increasing gas–liquid interaction area. To this extent, the bubble absorber is hereby proposed for efficient absorption. The i.p.a. effect existence offers an additional chance for a satisfactory explanation of the Marangoni effect.  相似文献   

11.
Photoinduced structural transformations in amorphous Sb2Se3–BaCl2–PbCl2 glasses were studied using a differential IR spectroscopy Fourier technique in the spectral region between 100 and 300 cm−1. A stage of the reversible photodarkening is realized in the Sb2Se3 fragments after the first cycle of photoexposure and thermoannealing. The whole scheme of the photo- and thermoinduced transformations in the amorphous system may be explained as a coordination of formation and annihilation of defects. The vibrational density of states calculated using quantum chemical solid state methods confirms our experimental results and their interpretation. Photoinduced photodarkening changes using a CO2 pulse laser (λ=10.6 μm) in new synthesized Sb2Se3–BaCl2–PbCl2 glasses were investigated. At the same time we have studied photoinduced second harmonic generation (SHG) and two-photon absorption (TPA). The possibility of using this glass as perspective materials for IR optoelectronics and nonlinear optics was shown.  相似文献   

12.
The performance of CO2 refrigeration systems strongly depends on the operating conditions. The specific characteristics of low critical temperature and high operating pressure limit its applications and imply the implementation of different control strategies. This study compares the performance of different CO2 system solutions for supermarket refrigeration with R404A system. Some possible modifications and improvements on the CO2 system have been investigated. The COP of the investigated CO2 system solution can be improved by about 3–7% along the ambient temperature range of 10–40 °C. The annual energy consumption calculations in three different climates; cold, moderate and hot, show that the centralized trans-critical CO2 system is good solution for cold climates whereas the NH3–CO2 cascade system has the lowest energy consumption in hot climates. Both systems proved to be good alternatives to R404A DX system for supermarket refrigeration.  相似文献   

13.
Compositional dependence of ionic conductivity in the system ZrO2–Y2O3–Yb2O3 was investigated in the temperature range 573–873 K using the complex impedance technique. It was shown that the conductivity decreases with increasing concentration of Yb2O3 in the system ZrO2–Y2O3–Yb2O3. Analyzing the experimental data according to the classic Arrhenius equation showed that such an experimental phenomenon can be attributed to the tighter association between Yb3+ and oxygen vacancy, compared with that between Y3+ and oxygen vacancy, which hinders the migration of oxygen vacancy in the materials.  相似文献   

14.
The objectives of this paper are to study the effect of key parameters on absorption performance and to develop an experimental correlation of mass transfer coefficient for ammonia–water bubble absorption. The orifice diameter, liquid concentration and vapor velocity are considered as the key parameters. This study successfully visualized the bubble behavior and measured the volumetric diameter of bubbles during the bubble absorption process. The bubble absorption is grouped into two processes, bubble growth (process I) and bubble disappearance (process II), respectively. The following conclusions were drawn from the present study. A new experimental correlation for the volumetric bubble diameter was proposed with ±15% error band, which could be applied to calculate the mass transfer coefficient. The mass transfer coefficient increased with a decrease of the liquid concentration. In process II, the mass transfer coefficient increased with an increase of the Galileo number. Finally, experimental correlations of mass transfer coefficient were developed for processes I and II with ±18% error bands.  相似文献   

15.
A range of coloured electronic or mixed ionic–electronic glasses has been evidenced in the Na2O–MoO3–P2O5 system. The properties of these glasses have been studied along different composition lines corresponding either to a fixed Na2O content or a constant Mo/P ratio. An EPR spectroscopy investigation of these glasses has allowed to determine the Mo5+ ion percentages in these materials. The electrical properties of these glasses have been studied by impedance spectroscopy, and the electronic and ionic contributions have been evaluated. The properties of these sodium glasses have been compared with those of lithium glasses with the same compositions.  相似文献   

16.
We have fabricated 0.2Pb(Mg1/3Nb2/3)O3–0.8Pb(Zr0.475Ti0.525)O3 [PMN–PZT] ceramics doped with various amounts of Li2O (0, 0.05, 0.1, 0.2, 0.3 wt.%) using the columbite precursor method. The effects of Li-doping on the conduction behavior of PMN–PZT ceramics are discussed in relation to the low frequency dielectric dispersion and frequency domain measurement. The Li-doped PMN–PZT ceramics sintered at 950 °C showed a sufficient densification with large dielectric constant and low dielectric loss. The incorporation of Li+ ion in PMN–PZT ceramics led to an appreciable reduction in electrical conductivity and further enhanced the ferroelectric and piezoelectric properties. The activation energies of PMN–PZT + xLi2O (x = 0, 0.05, 0.1, 0.2, 0.3 wt.%) ceramics calculated from ac conductivity measurement using the Arrhenius relation were 1.05, 1.25, 1.27, 1.38 and 1.41 eV, respectively. The conduction behavior is examined in the low frequency and high temperature region and the results are discussed in detail through crystal defect mechanism.  相似文献   

17.
CeO2–SnO2 and CeO2–TiO2 thin films were prepared by the Pechini method and their characteristics were compared, using a fractional factorial design to quantify the effect of five preparation variables. It was observed that CeO2–SnO2 electrodes show a greater electrochemical response than the CeO2–TiO2 films. The best intercalation charge densities were 18.11 and 9.91 mC/cm2 for CeO2–SnO2 and CeO2–TiO2, respectively. Both films were optically inactive with transparencies, in most cases, higher than 90%.  相似文献   

18.
In this investigation, thermal and structure finite element analysis has been employed to analyse the thermal stresses developed in Al2O3–SG, ZrO2–12%Si+A1 and ZrO2–SG.coatings subjected to thermal loading. Systems with 0.4 mm coating thickness and 4 mm substrate material thickness were modelled. Zirconia–spherical cast iron (SG) coatings with NiAl, NiCrAlY and NiCoCrAlY interlayers were also modelled. Nominal and shear stresses at the critical interface regions (film/interlayer/substrate) were obtained. The results showed that the lowest stress levels are in ZrO2–SG coatings. Furthermore, the interlayer thickness and material combinations have a significant influence on the level of the developed thermal stresses. It is also concluded that the finite element technique can be used to optimise the design and the processing of ceramic coatings.  相似文献   

19.
A large glass-forming domain has been identified in the Pb2P2O7–Ag4P2O7–AgI system. The physical properties have been determined as a function of AgI content. The ionic conductivity has been studied as a function of the Ag+ ion total concentration and the Ag+ ion concentration issued from the AgI component. The structure and electrical properties of obtained glasses are compared with those of ionic glasses of the Ag4P2O7–AgI system.  相似文献   

20.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号