首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stator-flux orientation concept allows very good transient and steady-state performances in induction motor drives. However, this control strategy can be conveniently implemented only if the stator flux is correctly observed in the entire speed range. The authors have developed a simple flux observer that gives very satisfactory results, especially near zero speed, and the approach which has been followed also allows a good speed estimation. The observer has been both simulated and implemented on an experimental system that uses a single chip to control the whole drive system. The experimental results show excellent performances, despite the low computational load  相似文献   

2.
Novel induction motor control optimizing both torque response and efficiency is proposed in the paper. The main contribution of the paper is a new structure of rotor flux observer aimed at the speed-sensorless operation of an induction machine servo drive at both low and high speed, where rapid speed changes can occur. The control differs from the conventional field-oriented control. Stator and rotor flux in stator fixed coordinates are controlled instead of the stator current components in rotor field coordinates isd and isq. In principle, the proposed method is based on driving the stator flux toward the reference stator flux vector defined by the input command, which are the reference torque and the reference rotor flux. The magnitude and orientation angle of the rotor flux of the induction motor are determined by the output of the closed-loop rotor flux observer based on sliding-mode control and Lyapunov theory. Simulations and experimental tests are provided to evaluate the consistency and performance of the proposed control technique  相似文献   

3.
This paper proposes an adaptive flux observer for induction motors, where stator and rotor resistances are estimated in online environments. The variation of motor parameters during operation degrades the performance of the controller and the flux observer. Among the parameters of induction motors, rotor resistance is a crucial one for flux estimation, and stator resistance also becomes critical in the low-speed region. Under the persistent excitation condition, the proposed method estimates the actual values of stator and rotor resistances simultaneously, which guarantees the exact estimation of the rotor flux. The persistent excitation condition is not satisfied when the electric torque of an induction motor is absent due to the lack of rotor currents. Even in this case, the proposed method achieves the correct estimation of the rotor flux. Simulations and actual experiments show that the rotor flux is estimated in all operating conditions and that both resistances converge to their actual values when the electrical motor torque exists  相似文献   

4.
This paper investigates a programmable cascaded low pass filter for the estimation of rotor flux of an induction motor, with a view to estimate the rotor time constant of an indirect field orientation controlled induction motor drive. Programmable cascaded low pass filters have been traditionally used in stator flux oriented vector control of the induction motor. This paper extends the use of this filter to estimate the rotor flux for the indirect field orientation control by generating rotor flux estimates from stator flux estimates. This is achieved by using a three-stage programmable cascaded low pass filter. The three-stage programmable cascaded low-pass filter investigated in this paper has resulted in excellent estimation of rotor flux in the steady-state and transient operation of an indirect field oriented drive. The estimated rotor flux data have also been used for the on-line rotor resistance identification with artificial neural network. Modeling and experiment results presented in this paper demonstrate this method of estimating rotor flux clearly.  相似文献   

5.
The performance of vector-controlled sensorless induction motor drives is generally poor at very low speeds, especially at zero speed due to offset and drift components in the acquired feedback signals, and the increased sensitivity of dynamic performance to model parameter mismatch resulting especially from stator resistance variations. The speed estimation is adversely affected by stator resistance variations due to temperature and frequency changes. This is particularly significant at very low speeds where the calculated flux deviates from its set values. Therefore, it is necessary to compensate for the parameter variation in sensorless induction motor drives, particularly at very low speeds. This paper presents a novel method of estimating both the shaft speed and stator resistance of an induction motor. In this novel scheme, an adaptive pseudoreduced-order flux observer (APFO) is developed. In comparison to the adaptive full-order flux observer (AFFO), the proposed method consumes less computational time, and provides a better stator resistance estimation dynamic performance. Both simulation and experimental results confirm the superiority of the proposed APFO scheme for a wide range of resistance variations from 0 to 100%.  相似文献   

6.
This paper presents a new method of online estimation for the stator and rotor resistances of the induction motor for speed sensorless indirect vector controlled drives, using artificial neural networks. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. For the stator resistance estimation, the error between the measured stator current and the estimated stator current using neural network is back propagated to adjust the weights of the neural network. The rotor speed is synthesized from the induction motor state equations. The performance of the stator and rotor resistance estimators and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations for variations in the stator and rotor resistances from their nominal values. Both resistances are estimated experimentally, using the proposed neural network in a vector controlled induction motor drive. Data on tracking performances of these estimators are presented. With this speed sensorless approach, the rotor resistance estimation was made insensitive to the stator resistance variations both in simulation and experiment. The accuracy of the estimated speed achieved experimentally, without the speed sensor clearly demonstrates the reliable and high-performance operation of the drive  相似文献   

7.
在电机轴上无机械速度传感器的可控交流电机驱动,由于其低廉的价格和较高的可靠性,一直备受关注。为了取代传感器,它通过测量定子电流和电机端电压得到转子速度信息。矢量控制传动需要估计定子或转子磁通基波的大小和空间位置。为此需要使用开环估计器或闭环观测器,它们在准确性、鲁棒性以及对模型参数变化的敏感性等性能上均不相同。通过信号注入即利用电机的各向异性,可以获得零速范围附近的动态性能和稳态速度精度。本文使用复杂空间矢量的信号流程图来形象地描述交流电机无传感器的控制系统。  相似文献   

8.
For a high-power induction motor drive, the switching frequency of the inverter cannot become higher than one kilohertz, and such a switching frequency produces a large current ripple, which then produces torque ripple. To minimize the current ripple, a method based on deadbeat control theory for current regulation is proposed. The pulsewidth modulation (PWM) pattern is determined at every sampling instant based on stator current measurements, motor speed, current references, and rotor flux vector, which is predicted by a state observer with variable poles selection, so that the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The proposed method consists of two parts: (1) derivation of a deadbeat control and (2) construction of a state observer that predicts the rotor flux and the stator currents in the next sampling instant. This paper describes a theoretical analysis, computer simulations and experimental results  相似文献   

9.
In the present paper an approach is presented to the speed control of permanent magnet synchronous motors without mechanical transducers. The rotor position, which is an essential component of any vector control scheme, is calculated through the instantaneous stator flux position and an estimated value of the load angle. A closed-loop state observer is implemented to compute the speed feedback signal. Experimental results on a laboratory tested motor drive are presented to validate the proposed procedure  相似文献   

10.
Permanent magnet-assisted reluctance synchronous machine (PM-RSM) starter alternator systems are credited with good performance for wide speed range in hybrid electric vehicles. This paper proposes a motion-sensorless motor/generator control of PM-RSM from zero speed up to maximum speed, using direct torque and flux control with space vector modulation. A quasioptimal stator flux reference with a flux versus torque functional is proposed. A stator flux observer in wide speed range uses combined voltage-current models for low speeds, and only the voltage model for medium to high speeds, both in proportional-integral closed loop. A novel rotor speed and position observer with a fusion strategy employs signal injection and only one D-module vector filter in stator reference for low speed, combined with a speed observer from the stator flux vector estimation-for medium-high speed. The proposed system is introduced piece by piece and then implemented on a dSpace 1103 control board with a 350-A metal-oxide-semiconductor field-effect transistor-pulse-width modulation converter connected to a 42-Vdc, 55-Ah battery, and a 140-Nm peak torque PM-RSM. Extensive experimental results from very low speed to high speed, regarding observers and drive responses, including artificial loading (motoring and generating), seem very encouraging for future starter-alternator systems.  相似文献   

11.
This paper proposes a hybrid speed estimator that gives the synergetic effect between the model- and the saliency-based field orientations for induction motor drives. The model-based field orientation consists of a flux observer with an adaptive speed estimator that has unstable regions at zero frequency and zero speed. Saliency-based flux orientation utilizes magnetic saliencies caused by saturation and high-frequency injection that causes the torque ripples due to the chattering. The chattering is caused by the higher cutoff frequency of the flux-angle estimation to keep its high dynamics. The proposed method compensates both faults and realizes complete speed estimation from zero to high-speed condition including zero stator frequency.  相似文献   

12.
本文介绍了异步电动机直接转矩控制的基本原理,提出了基于自适应全阶磁链观测器的速度估算方法,实现了无速度传感器的速度辨识。并应用Matlab/Simulink软件对该系统进行了建模和仿真,仿真结果表明,该系统对电机定子磁链的观测精度高,转速估算准确,尤其在低速下能保持很高的性能。  相似文献   

13.
李家荣 《变频器世界》2009,(1):48-50,95
提出了一种速度自适应的转子磁链闭环观测器,并应用于矢量控制系统中,以取代传统的纯积分器。经过理论证明,该系统是超稳定系统。针对1.1kW感应电机,采用MATLAB/SIMULINK仿真软件对系统进行仿真,仿真结果表明该方案对电机参数变化的鲁棒性较好,磁链观测精度高。同时,基于磁链状态观测器设计的速度辨识方案收敛速度快.精度高,尤其是在较低转速下仍能保持很高的精度。  相似文献   

14.
永磁直线同步电机由于结构的特殊性使其直交轴电感不相等,数学模型变得较为复杂,传统的观测器不再适用于直线电机。同时直接推力控制依赖观测器观测结果的准确性,尤其在低速阶段,以线性模型为基础建立的观测器不能很好地适应电机参数变化。根据永磁直线同步电机的数学模型,采用了推力磁链等效的方法,简化了其数学模型,从而解决了交直轴电感不相等引起的推力观测误差。同时,在自适应观测器中引入定子电阻自适应律,减小了低速段由于电机参数变化引起的定子磁链观测误差,提高了直接推力控制的低速段性能。并建立了相关的仿真模型,对定子磁链和电磁推力的观测效果进行了分析,从而验证了基于推力磁链的自适应观测器的有效性。  相似文献   

15.
Field-oriented-controlled induction motor drives have been widely used over the last several years. Conventional direct stator-flux-oriented control schemes have the disadvantage of poor performance in the low-speed operating area when the stator flux is calculated using the voltage model, due to the stator resistance uncertainties and variations. In this paper, a new closed-loop stator-flux estimation method for a stator-flux-oriented vector-controlled induction motor drive is presented in which the stator resistance value is updated during operation. This method is based on a simple algorithm capable of running in a low-cost microcontroller, which is derived from the dynamic model of the induction machine. The effects of stator resistance detuning, especially in the low-speed operating region, are investigated and simulation results are shown. The motor drive system as well as the control logic and the resistance estimator are simulated and characteristic simulation results are derived. In addition, the proposed control scheme is experimentally implemented and some characteristic experimental results are shown. The simulation as well as the experimental results reveal that the proposed method is able to obtain precise flux and torque control, even for very low operating frequencies  相似文献   

16.
In a conventional speed sensorless stator flux-oriented (SFO) induction motor drive, when the estimated speed is transformed into the sampled-data model using the first-forward difference approximation, the sampled-data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error included in the estimated speed is removed by the use of a low pass filter (LPF). As the result, the delay of the estimated speed occurs in transients by the use of the LPF. This paper investigates the problem of a conventional speed sensorless SFO system due to the delay of the estimated speed in the field weakening region. In addition, this paper proposes a method to estimate exactly speed by using Luenberger observer. The proposed method is verified by the simulation and experiment with a 5-hp induction motor drive.  相似文献   

17.
In a rotor-flux-oriented induction motor drive, stator transient inductance is varied with the change of operating conditions. If the stator transient inductance is not tuned, the field orientation cannot be obtained. As a result, q-axis rotor flux does not become zero, and the performance is deteriorated. This paper shows the problems caused by the detuning of stator transient inductance and proposes a simple online tuning scheme of stator transient inductance for an indirect rotor flux-oriented induction motor drive. Stator transient inductance is estimated only by stator voltage and stator current. The proposed method is verified by simulation and experimental results.  相似文献   

18.
为提高异步电机直接转矩控制系统的低速性能,本文中提出了一种模糊控制和PI闭环校正磁链观测器相结合的控制方法。该方法采用PI闭环校正磁链观测器代替传统U-I模型,给磁链和转矩误差分级,用模糊控制代替传统滞环控制选择合适的电压矢量.为减少模糊控制规则和加快模糊推理,定义了定子磁链角映射。仿真结果表明,此方法能够提高磁链的观...  相似文献   

19.
This paper proposes a design of a robust-adaptive full-order observer based on the /spl gamma/-positive real problem for sensorless induction-motor drives. The adaptive full-order observer is known to become unstable in a major part of the regenerating-mode low-speed operation, and this prevents the sensorless vector controller from operating an induction motor successfully. In this paper, a design of the observer gain for both stable speed identification and robust flux phase estimation and an adaptive scheme for stator resistance identification are proposed. First, the error system of the adaptive full-order observer is reconsidered-requirements of this observer with a speed identifier are described, in which a simple robust observer gain design in the sense of H/sub /spl infin// optimization is not useful in reality. Next, in order to satisfy all the requirements of the robust adaptive observer, the design of the observer gain based on the /spl gamma/-positive real problem and the adaptive scheme for stator resistance are described. Finally, several experimental results show the feasibility and effectiveness of the proposed design.  相似文献   

20.
State observers are key components of modern ac drives. The paper presents a comparative analysis of two state observers for induction-motor (IM) drives: the speed-adaptive observer and the inherently sensorless observer. The adaptive observer employs the time-variable full-order motor model with the rotor speed as the adaptive quantity. Thus, the speed estimation accuracy significantly impacts on the flux observer. It is shown that the popular model reference adaptive system (MRAS) speed estimator displays reduced bandwidth, and does not deliver adequate performance for the flux estimation. The inherently sensorless observer employs a full-order dual reference-frame model in order to eliminate the speed adaptation. In this way, it becomes decoupled from the speed estimator and its performance is superior to that of its adaptive counterpart. Theoretical aspects and comparative simulation results are discussed for both observers. Comparative experimental results for both observers are presented. Very low-speed-operation (3 r/min) capability of the drive with the sensorless observer is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号