首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of nitrogen incorporation on suppression of electron charge traps in Hf-based high- $kappa$ gate dielectrics have been studied by first-principles calculations, focusing on interactions between N atoms and electrons trapped at oxygen vacancies $(V_{rm O}{hskip0.2pt}hbox{'s})$. Our total energy calculations revealed that the formation energy of a doubly occupied state of $V_{rm O}$ is significantly increased in $hbox{HfO}_{x} hbox{N}_{y}$ compared to that in $hbox{HfO}_{2}$ . This clearly indicates that the electron charge traps at $V_{rm O}{ hskip0.2pt}hbox{'s}$ are considerably suppressed by N incorporation.   相似文献   

2.
We report on the dc and microwave characteristics of an $ hbox{InP/In}_{0.37}hbox{Ga}_{0.63}hbox{As}_{0.89}hbox{Sb}_{0.11}/hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ double heterojunction bipolar transistor grown by solid-source molecular beam epitaxy. The pseudomorphic $hbox{In}_{0.37}hbox{Ga}_{0.63}hbox{As}_{0.89}hbox{Sb}_{0.11}$ base reduces the conduction band offset $Delta E_{C}$ at the emitter/base junction and the base band gap, which leads to a very low $V_{rm BE}$ turn-on voltage of 0.35 V at 1 $hbox{A/cm}^{2}$ . A current gain of 125 and a peak $f_{T}$ of 238 GHz have been obtained on the devices with an emitter size of $hbox{1}times hbox{10} muhbox{m}^{2}$, suggesting that a high collector average velocity and a high current capability are achieved due to the type-II lineup at the InGaAsSb/InGaAs base/collector junction.   相似文献   

3.
The extraction of the effective mobility on $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ metal–oxide–semiconductor field-effect transistors (MOSFETs) is studied and shown to be greater than 3600 $hbox{cm}^{2}/hbox{V} cdot hbox{s}$. The removal of $C_{rm it}$ response in the split $C$$V$ measurement of these devices is crucial to the accurate analysis of these devices. Low-temperature split $C$$V$ can be used to freeze out the $D_{rm it}$ response to the ac signal but maintain its effect on the free carrier density through the substrate potential. Simulations that match this low-temperature data can then be “warmed up” to room temperature and an accurate measure of $Q_{rm inv}$ is achieved. These results confirm the fundamental performance advantages of $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ MOSFETs.   相似文献   

4.
Buckling was observed in $hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15}$ (BiNbO) films grown on $hbox{TiN}/hbox{SiO}_{2}/hbox{Si}$ at 300 $^{circ}hbox{C}$ but not in films grown at room temperature and annealed at 350 $^{circ}hbox{C}$. The 45-nm-thick films showed a high capacitance density and a low dissipation factor of 8.81 $hbox{fF}/muhbox{m}^{2}$ and 0.97% at 100 kHz, respectively, with a low leakage current density of 3.46 $hbox{nA}/hbox{cm}^{2}$ at 2 V. The quadratic and linear voltage coefficients of capacitance of this film were 846 $hbox{ppm}/hbox{V}^{2}$ and 137 ppm/V, respectively, with a low temperature coefficient of capacitance of 226 $hbox{ppm}/^{circ}hbox{C}$ at 100 kHz. This suggests that a BiNbO film grown on a $hbox{TiN}/ hbox{SiO}_{2}/hbox{Si}$ substrate is a good candidate material for high-performance metal–insulator–metal capacitors.   相似文献   

5.
Electrical properties of $hbox{Ga}_{2}hbox{O}_{3}/hbox{GaAs}$ interfaces with GdGaO cap dielectrics used in recent enhancement-mode GaAs-based NMOSFETs which perform in line with theoretical model predictions are presented. Capacitors with GdGaO thickness ranging from 3.0 to 18 nm ($hbox{0.9} leq hbox{EOT} leq hbox{3.9} hbox{nm}$) have been characterized by capacitance–voltage measurements. Midgap interface state density $D_{rm it}$, effective workfunction $phi_{m}$, fixed charge $Q_{f}$, dielectric constant $kappa$, and low field leakage current density are $hbox{2} times hbox{10}^{11} hbox{cm}^{-2} cdot hbox{eV}^{-1}$, 4.93 eV, $-hbox{8.9} times hbox{10}^{11} hbox{cm}^{-2}$, 19.5, and $hbox{10}^{-9}{-} hbox{10}^{-8} hbox{A/cm}^{2}$, respectively. The presence of interfacial Gd was confirmed to dramatically degrade electrical interface properties. The data illuminate the intimate interplay between heterostructure and interface engineering to achieve optimum MOSFET operation.   相似文献   

6.
Amorphous $hbox{Bi}_{5}hbox{Nb}_{3}hbox{O}_{15}(hbox{B}_{5} hbox{N}_{3})$ film grown at 300 $^{circ}hbox{C}$ showed a high-$k$ value of 71 at 100 kHz, and similar $k$ value was observed at 0.5–5.0 GHz. The 80-nm-thick film exhibited a high capacitance density of 7.8 fF/$muhbox{m}^{2}$ and a low dissipation factor of 0.95% at 100 kHz with a low leakage-current density of 1.23 nA/ $hbox{cm}^{2}$ at 1 V. The quadratic and linear voltage coefficient of capacitances of the $hbox{B}_{5}hbox{N}_{3}$ film were 438 ppm/$hbox{V}^{2}$ and 456 ppm/V, respectively, with a low temperature coefficient of capacitance of 309 ppm/$^{circ}hbox{C}$ at 100 kHz. These results confirmed the potential of the amorphous $hbox{B}_{5}hbox{N}_{3}$ film as a good candidate material for a high-performance metal–insulator–metal capacitors.   相似文献   

7.
A comparative study is made of the low-frequency noise (LFN) in amorphous indium–gallium–zinc oxide (a-IGZO) thin-film transistors (TFTs) with $hbox{Al}_{2}hbox{O}_{3}$ and $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ gate dielectrics. The LFN is proportional to $hbox{1}/f^{gamma}$, with $gamma sim hbox{1}$ for both devices, but the normalized noise for the $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ device is two to three orders of magnitude lower than that for the $hbox{Al}_{2} hbox{O}_{3}$ device. The mobility fluctuation is the dominant LFN mechanism in both devices, but the noise from the source/drain contacts becomes comparable to the intrinsic channel noise as the gate overdrive voltage increases in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices. The $hbox{SiN}_{x}$ interfacial layer is considered to be very effective in reducing LFN by suppressing the remote phonon scattering from the $hbox{Al}_{2}hbox{O}_{3}$ dielectric. Hooge's parameter is extracted to $sim !!hbox{6.0} times hbox{10}^{-3}$ in $hbox{Al}_{2}hbox{O}_{3}/hbox{SiN}_{x}$ devices.   相似文献   

8.
The effects of various sustain gaps on the reset discharge characteristics, particularly the discharge stability, are examined based on a $V_{t}$ close-curve analysis. The $V_{t}$ close-curve analysis shows that the reset discharge region producing a stable discharge under an MgO cathode condition is reduced in proportion to the increase in the sustain gap, resulting in discharge instability when a conventional reset waveform is applied with a wide-sustain-gap (over 200 $muhbox{m}$) structure. Based on the $V_{t}$ close-curve analysis, a modified reset waveform suitable for a wide-sustain-gap $(= hbox{200} muhbox{m})$ structure is proposed to prevent an unstable discharge. The effects of two parameters $V_{{rm add}hbox{-}{rm bias}}$ and $V_{{rm com}hbox{-}{rm bias}}$ in the modified reset waveform on the reset discharge as well as the address and first sustain discharges, are examined in detail.   相似文献   

9.
A systematic study on the switching mechanism of an $hbox{Al}/ hbox{Pr}_{0.7}hbox{Ca}_{0.3}hbox{MnO}_{3}$ (PCMO) device was performed. A polycrystalline PCMO film was deposited using a conventional sputtering method. A thin Al layer was introduced to induce a reaction with the PCMO, forming aluminum oxide $(hbox{AlO}_{x})$. Transmission electron microscopy analysis of the interface between Al and PCMO showed that resistive switching was governed by the formation and dissolution of $hbox{AlO}_{x}$. Some basic memory characteristics, such as good cycle endurance and data retention of up to $hbox{10}^{4}$ s at 125 $^{circ}hbox{C}$, were also obtained. It also showed excellent switching uniformity and high device yield.   相似文献   

10.
We report on performance improvement of $n$-type oxide–semiconductor thin-film transistors (TFTs) based on $hbox{TiO}_{x}$ active channels grown at 250 $^{circ}hbox{C}$ by plasma-enhanced atomic layer deposition. TFTs with as-grown $hbox{TiO}_{x}$ films exhibited the saturation mobility $(mu_{rm sat})$ as high as 3.2 $hbox{cm}^{2}/hbox{V}cdothbox{s}$ but suffered from the low on–off ratio $(I_{rm ON}/I_{rm OFF})$ of $hbox{2.0} times hbox{10}^{2}$. $hbox{N}_{2}hbox{O}$ plasma treatment was then attempted to improve $I_{rm ON}/I_{rm OFF}$. Upon treatment, the $hbox{TiO}_{x}$ TFTs exhibited $I_{rm ON}/I_{rm OFF}$ of $hbox{4.7} times hbox{10}^{5}$ and $mu_{rm sat}$ of 1.64 $hbox{cm}^{2}/hbox{V}cdothbox{s}$, showing a much improved performance balance and, thus, demonstrating their potentials for a wide variety of applications such as backplane technology in active-matrix displays and radio-frequency identification tags.   相似文献   

11.
We have fabricated high-$kappa hbox{Ni}/hbox{TiO}_{2}/hbox{ZrO}_{2}/ hbox{TiN}$ metal–insulator–metal (MIM) capacitors. A low leakage current of $hbox{8} times hbox{10}^{-8} hbox{A/cm}^{2}$ at 125 $^{circ}hbox{C}$ was obtained with a high 38- $hbox{fF}/muhbox{m}^{2}$ capacitance density and better than the $hbox{ZrO}_{2}$ MIM capacitors. The excellent device performance is due to the lower electric field in 9.5-nm-thick $hbox{TiO}_{2}/ hbox{ZrO}_{2}$ devices to decrease the leakage current and to a higher $kappa$ value of 58 for $ hbox{TiO}_{2}$ as compared with that of $hbox{ZrO}_{2}$ to preserve the high capacitance density.   相似文献   

12.
We report the first demonstration of metal–insulator–metal (MIM) capacitors with $hbox{Sm}_{2}hbox{O}_{3}/hbox{SiO}_{2}$ stacked dielectrics for precision analog circuit applications. By using the “canceling effect” of the positive quadratic voltage coefficient of capacitance (VCC) of $hbox{Sm}_{2}hbox{O}_{3}$ and the negative quadratic VCC of $hbox{SiO}_{2}$, MIM capacitors with capacitance density exceeding 7.3 $hbox{fF}/muhbox{m}^{2}$ , quadratic VCC of around $-hbox{50} hbox{ppm/V}^{2}$ , and leakage current density of $hbox{1} times hbox{10}^{-7} hbox{A/cm}^{2}$ at $+$3.3 V are successfully demonstrated. The obtained capacitance density and quadratic VCC satisfy the technical requirements specified in the International Technology Roadmap for Semiconductors through the year 2013 for MIM capacitors to be used in precision analog circuit applications.   相似文献   

13.
In this paper, a $hbox{Si}_{3}hbox{N}_{4}/hbox{ZrO}_{2}$ split charge trapping layer (SCTL) is proposed for multibit-cell Flash memory. The complementary potential wells of $hbox{Si}_{3}hbox{N}_{4}/hbox{ZrO}_{2}$ storage nodes enable independent node control when the Fowler–Nordheim (F–N) method is applied for programming/erasing (P/E). Experiment and simulation results suggest that the 2-bit (2-b) charge storage is accomplished by physical data node separation for the SCTL rather than charge injection control. The well-confined charge storages suppress the second-bit effect, enabling excellent 2-b data clearance for short-channel SCTL devices. It was found that the remaining memory windows after $hbox{10}^{5} hbox{s}$ decrease, dependent on the difference of the trap properties between $ hbox{Si}_{3}hbox{N}_{4}$ and $hbox{ZrO}_{2}$.   相似文献   

14.
We study the breakdown characteristics and timing statistics of InP and $hbox{In}_{0.52}hbox{Al}_{0.48}hbox{As}$ single-photon avalanche photodiodes (SPADs) with avalanche widths ranging from 0.2 to 1.0 $mu{hbox {m}}$ at room temperature using a random ionization path-length model. Our results show that, for a given avalanche width, the breakdown probability of $hbox{In}_{0.52}hbox{Al}_{0.48}hbox{As}$ SPADs increases faster with overbias than InP SPADs. When we compared their timing statistics, we observed that, for a given breakdown probability, InP requires a shorter time to reach breakdown and exhibits a smaller timing jitter than $hbox{In}_{0.52}hbox{Al}_{0.48}hbox{As}$ . However, due to the lower dark count probability and faster rise in breakdown probability with overbias, $hbox{In}_{0.52}hbox{Al}_{0.48}hbox{As}$ SPADs with $hbox{avalanche} hbox{widths}leq 0.5 mu{hbox {m}}$ are more suitable for single-photon detection at telecommunication wavelengths than InP SPADs. Moreover, we predict that, in InP SPADs with $hbox{avalanche} hbox{widths}leq 0.3 mu{hbox {m}}$ and $hbox{In}_{0.52}hbox{Al}_{0.48}hbox{As}$ SPADs with $hbox{avalanche} hbox{widths}leq 0.2 mu{hbox {m}}$, the dark count probability is higher than the photon count probability for all applied biases.   相似文献   

15.
Metal–ferroelectric–insulator–semiconductor (MFIS) capacitors with 400-nm-thick $hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}$ (BNdT) ferroelectric film and 4-nm-thick hafnium oxide $(hbox{HfO}_{2})$ layer on silicon substrate have been fabricated and characterized. It is demonstrated that the $hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}/ hbox{HfO}_{2}/hbox{Si}$ structure exhibits a large memory window of around 1.12 V at an operation voltage of 3.5 V. Moreover, the MFIS memory structure suffers only 10% degradation in the memory window after $hbox{10}^{10}$ switching cycles. The retention time is 100 s, which is enough for ferroelectric DRAM field-effect-transistor application. The excellent performance is attributed to the formation of well-crystallized BNdT perovskite thin film on top of the $ hbox{HfO}_{2}$ buffer layer, which serves as a good seed layer for BNdT crystallization, making the proposed $hbox{Pt}/hbox{Bi}_{3.15}hbox{Nd}_{0.85}hbox{Ti}_{3}hbox{O}_{12}/ hbox{HfO}_{2}/hbox{Si}$ suitable for high-performance ferroelectric memories.   相似文献   

16.
The influence of top electrode material on the resistive switching properties of $hbox{ZrO}_{2}$-based memory film using Pt as a bottom electrode was investigated in this letter. In comparison with $hbox{Pt/ZrO}_{2}/hbox{Pt}$ and $hbox{Al/ZrO}_{2}/hbox{Pt}$ devices, the $hbox{Ti/ZrO}_{2}/hbox{Pt}$ device exhibits different resistive switching current–voltage $(I$$V)$ curve, which can be traced and reproduced by a dc voltage more than 1000 times only showing a little decrease of resistance ratio between high and low resistance states. Furthermore, the broad dispersions of resistive switching characteristics in the $hbox{Pt/ZrO}_{2}/hbox{Pt}$ and $hbox{Al/ZrO}_{2}/hbox{Pt}$ devices are generally observed during successive resistive switching, but those dispersions are suppressed by the device using Ti as a top electrode. The reliability results, such as cycling endurance and continuous readout test, are also presented. The write-read-erase-read operations can be over $hbox{10}^{4}$ cycles without degradation. No data loss is found upon successive readout after performing various endurance cycles.   相似文献   

17.
We studied submicrometer $(L_{G} = hbox{0.15} {-} hbox{0.25} mu hbox{m})$ gate-recessed InAlN/AlN/GaN high-electron mobility transistors (HEMTs) on SiC substrates with 25-nm $hbox{Al}_{2}hbox{O}_{3}$ passivation. The combination of a low-damage gate-recess technology and the low sheet resistance of the InAlN/AlN/GaN structure resulted in HEMTs with a maximum dc output current density of $I_{{rm DS}, max} = hbox{1.5} hbox{A/mm}$ and a record peak extrinsic transconductance of $g_{m, {rm ext}} = hbox{675} hbox{mS/mm}$. The thin $hbox{Al}_{2}hbox{O}_{3}$ passivation improved the sheet resistance and the transconductance of these devices by 15% and 25%, respectively, at the same time that it effectively suppressed current collapse.   相似文献   

18.
Low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) with high- $kappa$ gate dielectrics and plasma surface treatments are demonstrated for the first time. Significant field-effect mobility $mu_{rm FE}$ improvements of $sim$86.0% and 112.5% are observed for LTPS-TFTs with $hbox{HfO}_{2}$ gate dielectric after $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments, respectively. In addition, the $hbox{N}_{2}$ and $ hbox{NH}_{3}$ plasma surface treatments can also reduce surface roughness scattering to enhance the field-effect mobility $mu_{rm FE}$ at high gate bias voltage $V_{G}$, resulting in 217.0% and 219.6% improvements in driving current, respectively. As a result, high-performance LTPS-TFT with low threshold voltage $V_{rm TH} sim hbox{0.33} hbox{V}$, excellent subthreshold swing S.S. $sim$0.156 V/decade, and high field-effect mobility $mu_{rm FE} sim hbox{62.02} hbox{cm}^{2}/hbox{V} cdot hbox{s}$ would be suitable for the application of system-on-panel.   相似文献   

19.
This letter reports on the implementation of high carbon content and high phosphorous content $hbox{Si}_{1 - x}hbox{C}_{x}$ layers in the source and drain regions of n-type MOSFET in a 65-nm-node integration scheme. The layers were grown using a novel epitaxial process. It is shown that by implementing stressors with $x approx hbox{0.01}$ , nMOSFET device performance is enhanced by up to 10%, driving 880 $mu hbox{A}/muhbox{m}$ at 1-V $V_{rm DD}$. It is also demonstrated that the successful implementation of $hbox{Si}_{1 - x} hbox{C}_{x}$ relies on the careful choice of integration and epitaxial layer parameters. There is a clear impact of the postepitaxial implantation and thermal treatment on the retained substitutional C content $([C_{rm sub}])$. Furthermore, adding a Si capping layer on top of the $hbox{Si}_{1 - x}hbox{C}_{x}$, greatly improves upon the stressors' stability during the downstream processing and the silicide sheet resistance.   相似文献   

20.
The “shape” of the desired frequency passband is an important consideration in the design of nonseparable multidimensional ($M$ -D) filters in $M$-D multirate systems. For $M$-D ${bf M}$th-band filters, the passband shape should be chosen such that the ${bf M}$th-band constraint is satisfied. The most commonly used shape of the passband for $M$-D ${bf M}$ th-band low-pass filters is the so-called symmetric parallelepiped (SPD) ${rm SPD}(pi {bf M}^{- {rm T}})$ . In this paper, we consider the more general parallelepiped passband ${rm SPD}(pi {bf L} ^{rm T})$, and derive conditions on $ {bf L} $ such that the ${bf M}$ th-band constraint is satisfied. This result gives some flexibility in designing $M$-D ${bf M}$th-band filters with parallelepiped shapes other than the commonly used case of $ {bf L} = {bf M}^{- 1}$. We present design examples of 2-D ${bf M}$th-band filters to illustrate this flexibility in the choice of $ {bf L} $.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号