首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature and orientation dependence of cyclic deformation, fatigue life, and fracture behavior in TiAl polysynthetically twinned (PST) crystals were investigated, focusing on the change of plastic strain energy and deformation mode in the γ domains. Stress-controlled fatigue tests were performed at 1 or 10 Hz using the same stress amplitude in tension and compression (R=−1) over a temperature range from −196 °C to 700 °C. The fatigue strength at ϕ=45 deg (ϕ being the angle between the loading axis and lamellar planes) decreased monotonically with increasing temperature. At ϕ=0 deg, the fatigue strength was high up to 500 °C, but the fatigue life decreased rapidly above 600 °C because of dynamic recovery and interlamellar separation. The plastic strain energy-stress amplitude curves in specimens fatigued with ϕ=45 deg increased monotonically with stress amplitude for all temperatures and for higher temperatures with ϕ=0 deg. At 25 °C and −196 °C with ϕ=0 deg, three regions in the plastic strain energy-stress amplitude curves were observed. This anomalous change in the plastic strain energy at lower temperatures was due to a transition in primary deformation mode between twinning and slip by ordinary dislocations in some domain orientations. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

2.
The temperature and orientation dependence of cyclic deformation, fatigue life, and fracture behavior in TiAl polysynthetically twinned (PST) crystals were investigated, focusing on the change of plastic strain energy and deformation mode in the γ domains. Stress-controlled fatigue tests were performed at 1 or 10 Hz using the same stress amplitude in tension and compression (R=−1) over a temperature range from −196 °C to 700 °C. The fatigue strength at ϕ=45 deg (ϕ being the angle between the loading axis and lamellar planes) decreased monotonically with increasing temperature. At ϕ=0 deg, the fatigue strength was high up to 500 °C, but the fatigue life decreased rapidly above 600°C because of dynamic recovery and interlamellar separation. The plastic strain energy—stress amplitude curves in specimens fatigued with ϕ=45 deg increased monotonically with stress amplitude for all temperatures and for higher temperatures with ϕ=0 deg. At 25 °C and −196 °C with ϕ=0 deg, three regions in the plastic strain energy—stress amplitude curves were observed. This anomalous change in the plastic strain energy at lower temperatures was due to a transition in primary deformation mode between twinning and slip by ordinary dislocations in some domain orientations. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

3.
The recovery and recrystallization behavior of cold-rolled polysynthetically twinned (PST) crystals of TiAl with a nearly stoichiometric composition was investigated as a function of reduction in thickness and subsequent annealing time at 900 and 1000°C. The change in microhardness was found to occur in two stages regardless of the amount of reduction; the first stage associated with the decrease in dislocation density and the second stage related with the annealing-out of deformation twins introduced in TiAl lamallae during rolling. However, the recrystallization mode was found to vary depending on the amount of reduction in thickness. In specimens rolled to less than 20% reduction in thickness, the full recovery in hardness occurs preserving the lamellar structure. In contrast, in specimens rolled to more than 40%, a structure composed of equiaxed grains of TiAl is obtained after recrystallization. A mechanism is proposed to interpret the unusual recrystallization behavior of PST crystals of TiAl cold-rolled to less than 20%.  相似文献   

4.
在Thermecmastor-Z动态热模拟试验机上对Ti-43Al-4Nb-1.4W和Ti-43Al-4Nb-1.4W-0.6B-0.2Y合金进行高温压缩变形实验(实验温度范围为1 050~1 150℃,应变速率范围为0.001~1 s 1),对其热变形组织进行显微分析,并利用热加工Z参数(Zener-Hollomon参数)综合描述变形温度及应变速率对材料热变形行为的影响。结果表明:2种合金在不同高温压缩变形条件下均发生不同程度的动态再结晶;随Z参数值的降低,β相逐渐由不规则形状转变为球形,且长大明显,同时,动态再结晶晶粒的体积含量也随之增加;Ti-43Al-4Nb-1.4W基合金的高温变形机制与Z参数值密切相关;在低Z值条件下,其主要变形机制为动态再结晶和β相的球化、长大;在高Z值条件下,其主要变形机制为片层的扭折、重新取向和局部动态再结晶;加入微量B和Y后,动态再结晶程度增大,这主要与颗粒诱发动态再结晶形核有关。  相似文献   

5.
The deformation flow behaviors of Ti-45Al-5.4V-3.6Nb-0.3Y alloy at different temperatures and strain rates were studied by isothermal compressing simulation test.The apparent activation energy of deformation was calculated to be 402.096 kJ/mol and constitutive equation was established to describe the flow behavior.Microstructure and flow softening observations exhibited that Ti-45Al-5.4V3.6Nb-0.3Y alloy had bad hot workability at low temperature (lower than 1 100 oC) and high strain rate (higher than 0.5 s–...  相似文献   

6.
Tensile samples from NiAl-Hf single crystals, having the same nominal composition and heat treated and creep tested under identical conditions at 1144 K, were found to exhibit very different rupture lives and creep ductilities. A case study was conducted on two samples with creep rupture lives of 343.6 and 37.0 hours (with corresponding creep ductilities of 12.3 and 39.9 pct, respectively) in order to find the causes of such a large variation in creep properties. Detailed microstructural analyses using optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated that the sample with higher rupture life and lower ductility had deformed uniformly along the length of the gage section, whereas the sample with lower rupture life and higher ductility (sample L) deformed by localized plastic deformation resulting in shear failure. This shear failure was due to a plastic instability in sample L which was caused by the presence of a high density of large Hf-rich interdendritic particles that were formed during casting of the single-crystal ingot but did not go into solution during the homogenization heat treatment. The role of these particles in causing nonuniform deformation, which led to strain localization and a premature failure in sample L, has been described in detail.  相似文献   

7.
通过高温压缩模拟试验结果建立TiAl基合金的热加工图,结合扫描电镜、透射电镜等试验手段,研究铸造TiAl基合金在温度为1 000~1 150℃、应变速率为0.001~1 s 1范围内的热变形行为。结果表明:铸造TiAl基合金是温度、应变速率敏感材料,其流变应力随温度升高和应变速率降低而降低。铸造TiAl基合金的高温变形机制以层片晶团的扭折、弯曲及动态再结晶过程为主。在高温(1 150℃),低应变速率(≤0.01 s 1)下变形后,铸态组织中β相含量明显减少直至消除。在变形温度1 150℃、应变速率0.001 s 1下变形时,铸造TiAl基合金未发生超塑性变形;此时由于动态再结晶晶粒异常长大导致加工图上该区域功率耗散值未达到最大,而是有减小的趋势。  相似文献   

8.
During annealing of a two-phase TiAl/Ti3Al lamellar alloy at 1273 and 1323 K, the lamellar microstructure evolves into a coarse, globular microstructure. For short annealing times (less than about 1000 hours), microstructural evolution occurs predominantly by intrapacket termination migration coarsening. For longer annealing times, cylinderization and conventional Ostwald ripening coarsening mechanisms are observed. The activation energy for the rate-controlling diffusion process governing intrapacket termination migration coarsening of the lamellar microstructure was determined to be 215 kJ/mol. Compression creep tests reveal that the minimum creep rate and primary creep strain of the lamellar alloy increase with increasing prior annealing time. Furthermore, in contrast to the lamellar microstructure, the globular microstructure is not susceptible to deformation-induced spheroidization during compression creep testing. Modeling demonstrates that the increase of the minimum creep rate and primary creep strain as a consequence of annealing of the lamellar alloy can be accounted for by consideration of two factors: the decrease in the work-hardening rate of the lamellar alloy in response to the overall decrease in interphase interfacial area and the decreased mechanical strengthening effect associated with transformation from a lamellar to a globular microstructure. Formerly Graduate Student, Department of Materials Science and Engineering, University of Virginia  相似文献   

9.
Microstructure development during high-velocity deformation   总被引:1,自引:0,他引:1  
An austenitic stainless steel was deformed at high (103 s−1) strain rates at two levels of strain by electromagnetic forces. Transmission electron microscopy (TEM) studies, X-ray diffraction analysis, and superconducting quantum-interference device (SQUID) measurements show that high strain rates induce the formation of stacking faults and twin structures, enhance the tendency for ɛ-martensite formation, and suppress the amount of α′-martensite. The increased presence of stacking faults and twin structures at high strain rates can be explained by an easy nucleation of partial dislocations at high strain rates and a superior aptitude for partial dislocations to react to high strain rates due to their jump frequency. The suppression of α′-martensite can be explained by the adiabatic heating produced during electromagnetic forming.  相似文献   

10.
经强冷变形后的单晶铜线会产生明显的亚结构。在退火过程中该亚结构将发生转变.以中拉单晶铜线为对象,通过金相、力学性能测试法、电阻测试等手段研究了经强冷变形后的单晶铜线在不同退火工艺制度下的组织性能变化和再结晶过程.研究结果表明:加工态单晶铜线材的再结晶温度开始在250℃左右,比相同冷变形率下的SCR连铸纯铜杆的再结晶温度高约50℃.强冷变形单晶铜线再结晶形核的孕育期随温度升高而缩短.500。C时的孕育期不足2min.单晶铜在退火的回复阶段导电性能得到改善,但温度较高发生再结晶时,由于晶界数量的不断增加,有抑制电阻率减小的作用.强冷变形后的单晶铜线要想恢复足够的塑性,则难以避免成为多晶,如果既要恢复单晶铜线的塑性和导电性,又要维持单晶的组织形态,进行高温超短时间退火将有助于解决这一问题.  相似文献   

11.
通过蠕变曲线测定及组织形貌观察,研究了一种镍基单晶合金的蠕变行为和变形特征.结果表明:单晶合金在试验的温度和应力范围内,对施加应力和温度有明显的敏感性.由所得数据测算出合金的蠕变激活能和应力指数.蠕变初期在施加温度和应力场的作用下,立方γ′相逐渐转变成与施加应力轴方向垂直的N型筏状结构.稳态蠕变期间,合金的变形机制是位错攀移越过筏状γ′相,由于高温蠕变稳态阶段形成的N型γ′相筏状组织厚度较小,位错易于攀移,因而合金具有较大的应变速率.蠕变后期,由于塑性变形,在近断口处筏形γ′相转变成与应力轴方向呈45°角的形貌,合金的变形机制是位错剪切筏状γ′相.  相似文献   

12.
The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 °C to 1050 °C. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (ε ≅ 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 °C to 1250 °C using strain rates ranging from 10 to 10−4/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 °C and 10−3/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 °C and 10−4/s and was considered to be a domain of superplasticity. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

13.
INCONEL alloy 617 (54 Ni, 22 Cr, 12.5 Co, 9 Mo, 1 Al, 0.07 C) is a solid-solution alloy with good corrosion resistance and an exceptional combination of high-temperature strength and oxidation resistance. A laboratory study was performed to determine the effects of long-time (215 to over 10,000 h) exposure to temperatures up to 2000°F (1093°C) on the microstructure and phase stability of the alloy. To investigate the strengthening response exhibited by the alloy during high-temperature exposure, microstructures were correlated with mechanical properties. The major phase present in the alloy after exposure to all temperatures from 1200 to 2000°F (649 to 1093°C) was found to be M23C6. The phase precipitated as discrete particles and remained stable at aü temperatures. No MC or M6C carbides were found. A small amount of gamma prime was found in samples exposed at 1200°F (649°C) and 1400°F (760°C). A PHACOMP analysis indicated 0.63 pct gamma prime could form. No topological close-packed phases such as sigma, mu, and chi were found. Strengthening of the alloy during exposure to temperature was found to result primarily from the precipitation of M23C6. The phase provides effective strengthening because it precipitates in discrete particles and remains stable at temperatures to 2000°F (1093°C). The amount of gamma prime formed is not sufficient to cause appreciable hardening, but it does provide some strengthening at 1200 to 1400°F (649 to 760°C).  相似文献   

14.
The plastic deformation of TiAl   总被引:1,自引:0,他引:1  
The deformation substructure of TiAl (Llo type ordered lattice) tested in compression, and the factors determining it were investigated. Two types of dislocations take part in the plas-tic deformation, namely a/2 [110] and a/2 [Oil]. The latter type will disorder the Llo super-lattice and therefore would be expected to move in pairs as superdislocations. Some obser-vations are essentially in agreement with the predictions, however the large proportion and morphology of a/2 [O1l] dislocations observed was unexpected. Twins of the [112] (111) type play an important role in the deformation of the alloy, and the early stages of their formation have been recorded. Finally, equi-Schmid factor lines have been constructed in an attempt to evaluate the importance of the sense of the applied stress on the deformation capability of the alloy. Formerly visiting Scientist at the Aerospace Research Laboratories  相似文献   

15.
The microstructure of three specimens of the martensitic steel X22CrMoV12-1 which had been subjected to long-term cyclic creep at 873 K with intermittent phases of unloading (stress ratio R = 0) and compression (R = ?1) was quantified by electron microscopy with regard to carbides, dislocations and pores. The laws of time dependent coarsening of carbides and strain controlled growth of subgrains found for monotonic creep hold also for cyclic creep. The longer time it takes cyclic creep to reach a given strain leads to a growth advantage of carbides compared to monotonic creep. The microstructural model of plastic deformation previously developed for monotonic creep on X20(22)CrMoV12-1 allows to calculate the cyclic creep acceleration due to this advantage in carbide growth.  相似文献   

16.
Creep fracture process in Inconel alloy X-750 can be modified by room-temperature prestraining. It has been observed that fracture in the prestrained specimens occurred due to growth and interlinkage of the prenucleated voids whereas failure occurred by plastic instability in the non-prestrained specimens. Creep ductility and the times-to-rupture are found to decrease progressively with room-temperature prestraining, but there is no marked influence on the minimum creep rate. This is explained in terms of two compcting processes: a weakening effect caused by prenucleation of grain boundary voids and a hardening effect due to generation of dislocations due to the prestraining.  相似文献   

17.
Isothermal oxidation behavior of Ti-48.6 at. pct Al alloy was studied in pure dry oxygen over the temperature range 850 °C to 1000 °C. The oxidation was essentially parabolic at all temperatures with significant increase in the rate at 1000 °C. Effective activation energy of 404 kJ/mol was deduced. The oxidation products were a mixture of TiO2 (rutile) and α-Al2O3 at all temperatures. An external protective layer of alumina was not observed on this alloy at any of the temperatures studied. A layered structure of oxides was formed on the alloy at 1000 °C.  相似文献   

18.
The fatigue behavior of Ti-36.3 wt pct Al and Ti-36.2 wt pct Al-4.65 wt pct Nb alloys was studied in the temperature range room temperature to 900°C. The microstructures of the alloys tested consisted predominantly of γ phase (TiAl) with a small volume fraction of γ phase (Ti3Al) distributed in lamellar form. The alloys were tested to failure in alternate tension-compression fatigue at several constant load amplitudes with zero mean stress. Fracture modes and substructural changes resulting from fatigue deformation were studied by scanning electron microscopy and transmission electron miscroscopy respectively. The ratio of fatigue strength (at 106 cycles) to ultimate tensile strength was found to be in the range 0.5 to 0.8 over the range of temperatures tested. The predominant mode of fracture changed from cleavage type at room temperature to intergranular type at temperatures above 600°C. The fatigue microstructure at low temperatures consisted of a high density of a/3 [111] faults and dislocation debris of predominantly a/2 [110] and a/2 [110] Burger's vectors with no preferential alignment of dislocations. At high temperatures, a dislocation braid structure consisting of all 〈110〉 slip vectors was observed. The changes in fracture behavior with temperature correlated well with changes in dislocation substructure developed during fatigue deformation. S. M. L. SASTRY was formerly NRC Research Associate in the Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH  相似文献   

19.
观察研究了Ti-46.2Al-2.0V-1.0Cr-0.5Ni(at%)合金近等温挤压和等通道角挤压变形后的组织,并与近等温锻造得到的组织进行了对比分析.发现挤压比为3.1的近等温挤压变形钛铝合金的动态再结晶组织较为细小均匀,无明显变形带,有利于后续成形和热处理后获得综合性能优异的细小全层片组织;而等通道角挤压变形钛铝合金近转角侧面出现裂纹,但完整部分的组织与锻造组织类似,而且其中层片结构碎化的程度较高.  相似文献   

20.
以Ti-45Al合金粉、Nb粉、Al粉和TiB2合金粉为原料,采用放电等离子烧结法制备含纳米TiB增强相的Ti-45Al-7Nb-1B合金,通过热模拟实验研究该合金在900~1 200℃、应变速率为0.001~1 s-1条件下的热变形行为,推导出高温变形流变本构方程,并建立基于动态材料模型的热加工图。结果表明:含纳米TiB增强相的Ti-45Al-7Nb-1B合金的高温流变应力与变形条件之间的关系可用双曲正弦函数描述,其高温变形激活能为497.95k J/mol,在高应变速率(0.1 s-1)条件下变形时,材料发生失稳变形,最佳变形参数区间为1 000~1 130℃/0.001~0.01 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号