首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Based on the generalized beam formulation, we derive the scintillation index and selectively evaluate it for cos-Gaussian and annular beams propagating in weak atmospheric turbulence. Dependence of the scintillation index on propagation length, focusing and displacement parameters, wavelength of operation, and source size are individually investigated. From our graphical outputs, it is observed that a cos-Gaussian beam exhibits lower scintillations and thus has a tendency to be advantageous over a pure Gaussian beam particularly at lower propagation lengths. It is also found that at longer propagation lengths, this advantage switches to the side of the annular beam. Furthermore, the scintillation index of a focused annular beam will be below those of both Gaussian and cos-Gaussian beams starting at earlier propagation distances. When analyzed against source sizes, it is seen that cos-Gaussian beams will offer advantages at relatively large source sizes, while the reverse will be applicable for annular beams.  相似文献   

2.
By using the generalized beam formulation, the scintillation index is derived and evaluated for cosh-Gaussian beams in a turbulent atmosphere. Comparisons are made to cos-Gaussian and Gaussian beam scintillations. The variations of scintillations against propagation length at different values of displacement and focusing parameters are examined. The dependence of scintillations on source size at different propagation lengths is also investigated. Two-dimensional scintillation index distributions covering the entire transverse receiver planes are given. From the graphic illustrations, it is found that in comparison to pure Gaussian beams cosh-Gaussian beams have lower on-axis scintillations at smaller source sizes and longer propagation distances. The focusing effect appears to impose more reduction on the cosh-Gaussian beam scintillations than those of the Gaussian beam. The distribution of the off-axis scintillation index values of the Gaussian beams appears to be uniform over the transverse receiver plane, whereas that of the cosh-Gaussian beam is arranged according to the position of the slanted axis.  相似文献   

3.
Taking the Gaussian–Schell model vortex beam as a typical example of partially coherent vortex beams, the spatial correlation properties and correlation vortices of partially coherent vortex beams diffracted by an aperture are studied. It is shown that the off-axis displacement and spatial coherence affects the spectral degree of coherence. The number and position of correlation vortices depend on the off-axis displacement, spatial coherence, aperture truncation and propagation distance, where the effect of aperture diffraction on the correlation vortices is stressed. The number of correlation vortices decrease as the truncation parameter increases. The correlation vortices in the diffracted field result from the vortex embedded in partially coherent beams at the source plane rather than from the aperture diffraction. The correlation vortices in the diffracted field appear even when the vortex core is stopped by the aperture.  相似文献   

4.
Atmospheric optical communication with a Gaussian Schell beam   总被引:7,自引:0,他引:7  
We consider a wireless optical communication link in which the laser source is a Gaussian Schell beam. The effects of atmospheric turbulence strength and degree of source spatial coherence on aperture averaging and average bit error rate are examined. To accomplish this, we have derived analytic expressions for the spatial covariance of irradiance fluctuations and log-intensity variance for a Gaussian beam of any degree of coherence in the weak fluctuation regime. When spatial coherence of the transmitted source beam is reduced, intensity fluctuations (scintillations) decrease, leading to a significant reduction in the bit error rate of the optical communication link. We have also identified an enhanced aperture-averaging effect that occurs in tightly focused coherent Gaussian beams and in collimated and slightly divergent partially coherent beams. The expressions derived provide a useful design tool for selecting the optimal transmitter beam size, receiver aperture size, beam spatial coherence, transmitter focusing, etc., for the anticipated atmospheric channel conditions.  相似文献   

5.
Based on the Huygens–Fresnel principle and the unified theory of coherence and polarization of partially coherent beams, we investigate the propagation characteristics of a partially coherent radially polarized doughnut (PCRPD) beam in a turbulent atmosphere. It is found that, after propagating through a turbulent atmosphere, the doughnut beam spot is changed into a circular Gaussian beam. Moreover, the degree of coherence, the degree of polarization and the degree of cross-polarization of the beam will change on propagation, and this change is dependent upon the degree of coherence of the source and atmospheric turbulence.  相似文献   

6.
The analytical formulas for the spectrum of modified partially coherent flat-topped (MPCFT) beams propagating in a turbulent atmosphere have been derived under strong fluctuation condition of turbulence. The spectral properties of MPCFT beams propagating in a strong turbulence have been investigated, and the changes of on-axis and off-axis spectral distributions have been analyzed quantitatively. The results show that the on-axis relative spectral shift of the modified partially coherent flat-topped beam exhibits spectral switch for the beam order M > 1, and with the increasing propagation distance the blue-shift gradually decreases in atmospheric turbulence. A rapid transition for the off-axis spectrum appears at one critical position in turbulence, and the position decreases with the increasing beam order for the lower beam order and the nearer propagation distance. The spectral properties and the spectral shifts of MPCFT beams also depend on the inner scale, the spatial coherence parameter.  相似文献   

7.
《Journal of Modern Optics》2013,60(8):1075-1097
The transverse and longitudinal spatial coherence properties of the light beams generated by planar gaussian Schell-model sources are discussed. It is found that for all gaussian Schell-model beams the ratio of the transverse coherence length to the beam width remains invariant upon propagation. An examination of the longitudinal coherence for both on-axis and off-axis pairs of points indicates that the longitudinal coherence will not, in general, die out as the separation between the points is increased. Rather, the degree of longitudinal coherence will approach a finite (non-zero) value as long as the source contains a finite coherence area, regardless of how small this area may be. Gaussian quasihomogeneous beams are studied as a limiting case. The relation of the present work to the analysis of speckle size is briefly discussed.  相似文献   

8.
Theoretical study of propagation behaviour of partially coherent divergent Gaussian beams through oceanic turbulence has been performed. Based on the previously developed knowledge of propagation of a partially coherent beam in atmosphere, the spatial power spectrum of the refractive index of ocean water, extended Huygens–Fresnel principle and the unified theory of coherence and polarization, analytical formulas for cross-spectral density matrix elements are derived. The analytical formulas for intensity distribution, beam width and spectral degree of coherence are determined by using cross-spectral density matrix elements. Then, the effects of some source factors and turbulent ocean parameters on statistical properties of divergent Gaussian beam propagating through turbulent water are analysed. It is found that beam’s statistical propagation behaviour is affected by both environmental and source parameters variations.  相似文献   

9.
The composite coherence vortices by coherently and incoherently superimposing two parallel, off-axis partially coherent vortex beams and their evolution in free space are studied. It is shown that the superposition scheme, off-axis distance, coherence parameter and propagation distance affect the position and number of composite coherence vortices. The motion, creation and annihilation of composite coherence vortices appear by varying the off-axis distance, coherence parameter and propagation distance. The coherent and incoherent superpositions result in the different position and number of composite coherence vortices and their different evolution behavior in the coherent limit.  相似文献   

10.
The truncated fractional Fourier transform (FRT) is applied to a partially coherent Gaussian Schell-model (GSM) beam. The analytical propagation formula for a partially coherent GSM beam propagating through a truncated FRT optical system is derived by using a tensor method. Furthermore, we report the experimental observation of the truncated FRT for a partially coherent GSM beam. The experimental results are consistent with the theoretical results. Our results show that initial source coherence, fractional order, and aperture width (i.e., truncation parameter) have strong influences on the intensity and coherence properties of the partially coherent beam in the FRT plane. When the aperture width is large, both the intensity and the spectral degree of coherence in the FRT plane are of Gaussian distribution. As the aperture width decreases, the diffraction pattern gradually appears in the FRT plane, and the spectral degree of coherence becomes of non-Gaussian distribution. As the coherence of the initial GSM beam decreases, the diffraction pattern for the case of small aperture widths gradually disappears.  相似文献   

11.
On the basis of the extended Huygens-Fresnel principle, the scattering of partially coherent Gaussian-Schell-model (GSM) beams from a diffuse target in slant double-passage atmospheric turbulence is studied and compared with that of fully coherent Gaussian beams. Using the cross-spectral density function of the GSM beams, we derive the expressions of the mutual coherence function, angle-of-arrival fluctuation, and covariance and variance of the intensity of the scattered field, taking into account the fluctuations of both the log-amplitude and phase. The numerical results are presented, and the influences of the wavelength, propagation distance, and waist radius on scattering properties are discussed. The perturbation region of the normalized intensity variance of the partially coherent GSM beam is smaller than that of the fully coherent Gaussian beam at the middle turbulence level. The normalized intensity variance of long-distance beam propagation is smaller than that of beam propagation along a short distance.  相似文献   

12.
Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam (LGB) on propagation in free space and turbulent atmosphere are studied comparatively with the help of the general propagation formula for such beam. It is found that the behavior of the complex degree of coherence of a partially coherent LGB on propagation in turbulent atmosphere is much different from that in free space and is closely related to the initial beam parameters and the structure constant of the turbulent atmosphere. The distribution of the modulus of the complex degree of coherence of the partially coherent LGB finally becomes of Gaussian distribution at long propagation distance in turbulent atmosphere, and it becomes of Gaussian distribution more slowly with the increase of the mode orders, beam width and wavelength. Our results will be useful in long-distance free-space optical communications.  相似文献   

13.
On the basis of the fact that a hard-edged aperture function can be expanded into an approximate sum of complex Gaussian functions with finite numbers and the method of truncated second-order moments, the generalized beam propagation factor of truncated partially coherent controllable dark-hollow beams is derived. Some typical numerical simulations are given to illustrate the relations of the generalized beam propagation factor to four parameters: beam parameter ε, beam order N, truncation parameter F and coherence parameter T.  相似文献   

14.
Based on the modified beam model for flat-topped beams and the Schell model for partially coherent light, an expression for partially coherent flat-topped (PCFT) beams has been proposed. The propagation characteristics of PCFT beams with circular symmetry through a turbulent atmosphere have been studied. By using the generalized Huygens-Fresnel integral and Fourier transform method, the expressions for the cross-spectral density function and the average intensity have been given and the analytical expression for the root-mean-square width has been derived. The effects of the beam order, the spatial coherence, and the turbulent parameter on the intensity distributions and beam spreading have been discussed in detail. Our results show that the on-axis intensity of the beams decreases with increasing turbulence and decreasing coherence of the source, whereas the on-axis intensity of the beams in the far field decreases slightly with increasing beam order. The relative spreading of PCFT beams is smaller for beams with a higher order, a lower degree of global coherence of the source, a larger inner scale, and a smaller outer scale of the turbulence.  相似文献   

15.
A method of studying the M2-factor of truncated partially coherent beams both in free space and in turbulence is proposed, i.e., the method of the window function being expanded into a finite sum of complex-valued Gaussian functions. Taking the Gaussian Schell-model (GSM) beam as a typical example of partially coherent beams, the analytical formula of the M2-factor of truncated GSM beams propagating through atmospheric turbulence is derived. It is shown that the M2-factor decreases as the truncation parameter δ and the coherence parameter α increase. However, the M2-factor in turbulence is more sensitive to δ than that in free space. On the other hand, the M2-factor of truncated partially coherent beams with smaller δ is more affected by turbulence. In addition, the effect of turbulence on the M2-factor of truncated GSM beams is less sensitive to the coherence parameter α than that of nontruncated GSM beams.  相似文献   

16.
Abstract

We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.  相似文献   

17.
The propagation and focusing properties of a class of Gaussian beams generated by optical resonators with Gaussian reflectivity mirrors are investigated. Attention is concentrated on the following two beams in this class: (a) the annular Gaussian beam (the Gaussian doughnut mode) and (b) the flat-topped Gaussian beam. A class of flat-topped Gaussian beams is introduced. All analysis is limited to a coherent superposition scheme of the lowest-order Gaussian modes (TEM00) that have different parameters.  相似文献   

18.
Based on the generalized Huygens–Fresnel integral, propagation of partially coherent Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz–Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz–Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz–Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.  相似文献   

19.
The closed-form expression for the mean-squared beam width of partially coherent Hermite-Gaussian (H-G) beams propagating through atmospheric turbulence is derived. The influence of turbulence on the spreading of partially coherent H-G beams is studied quantitatively by examining the mean-squared beam width. It is found that the smaller the coherence length sigma(0) of the source is, and the larger the beam order m and the wavelength lambda are, the less partially coherent H-G beams are affected by the turbulence, although the beams with smaller sigma(0), larger m, and larger lambda have greater spreading in free space. In addition, it is shown that two partially coherent H-G beams may generate the same angular spread and that there exist equivalent partially coherent H-G beams that may have the same directionality as a fully coherent Gaussian beam in free space and also in turbulence. The results are illustrated by examples, and a comparison with previous work is also made.  相似文献   

20.
Coupling properties and kurtosis parameter (K parameter) of arbitrary beams propagating through atmospheric turbulence are investigated. A correlation factor (C4-factor) is introduced to describe the influence of turbulence on coupling characteristics. The general analytical expression for C4-factor of arbitrary beams in atmospheric turbulence is derived. It is shown that C4-factor of arbitrary beams in the turbulent atmosphere depends on the initial second-order moments and fourth-order moments and turbulence quantities. Taking the partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam as an example, we can obtain that C4-factor decreases as structure constant of the refractive index fluctuations and inner scale increase, and waist width and transverse coherence length decrease when z?>?5?km. Moreover, K parameter of PCAEHG beam in turbulent atmosphere converges to 2 when propagation distance is large enough. It indicates that the profile of PCAEHG beams in turbulent atmosphere finally evolves into fundamental Gaussian distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号