首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to propose an alternative use for coffee husks (CH), a coffee processing residue, as untreated sorbents for the removal of heavy metal ions from aqueous solutions. Biosorption studies were conducted in a batch system as a function of contact time, initial metal ion concentration, biosorbent concentration and pH of the solution. A contact time of 72 h assured attainment of equilibrium for Cu(II), Cd(II) and Zn(II). The sorption efficiency after equilibrium was higher for Cu(II) (89-98% adsorption), followed by Cd(II) (65-85%) and Zn(II) (48-79%). Even though equilibrium was not attained in the case of Cr(VI) ions, sorption efficiency ranged from 79 to 86%. Sorption performance improved as metal ions concentrations were lowered. The experimental sorption equilibrium data were fitted by both Langmuir and Freundlich sorption models, with Langmuir providing the best fit (R2>0.95). The biosorption kinetics was determined by fitting first and second-order kinetic models to the experimental data, being better described by the pseudo-second-order model (R2>0.99). The amount of metal ions sorbed increased with the biosorbent concentration in the case of Cu(II) and Cr(VI) and did not present significant variations for the other metal ions. The effect of the initial pH in the biosorption efficiency was verified in the pH range of 4-7, and the results showed that the highest adsorption capacity occurred at distinct pH values for each metal ion. A comparison of the maximum sorption capacity of several untreated biomaterial-based residues showed that coffee husks are suitable candidates for use as biosorbents in the removal of heavy metals from aqueous solutions.  相似文献   

2.
Sorption of metal ions on lignite and the derived humic substances   总被引:5,自引:0,他引:5  
The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters.  相似文献   

3.
This work investigates adsorption of metal ions on Sphagnum peat from solutions with environmentally relevant concentrations of metals. The peat moss is intended as an alternative, low-cost filter material for contaminated waters. Adsorption of Cd, Cu, Ni, Pb and Zn was studied in batch tests, and adsorption isotherms were determined. The kinetics of adsorption was analyzed using a second-order model and rate constants were calculated. An empirical model for predicting adsorption of metal ions at a given time was derived from these constants. Metal ions were removed in the descending order Pb>Cu>Ni>Cd>Zn. Relationship between the affinities of the metals to the peat active sites with chemical properties for the metals were indicated by the results. In addition, equilibration studies were performed at constant pH and ionic strength. The experimental data fitted the Freundlich equation. Both the uptake of metals and the Freundlich constants increased in line with increasing pH. The Freundlich exponent declined with higher initial concentrations, suggesting adsorption to sites with lower activity.  相似文献   

4.
The study reports removal of heavy metals when present singly or in binary and ternary systems by the milling agrowaste of Cicer arientinum (chickpea var. black gram) as the biosorbent. The biosorbent removed heavy metal ions efficiently from aqueous solutions with the selectivity order of Pb>Cd>Zn>Cu>Ni. The biosorption of metal ions by black gram husk (BGH) increased as the initial metal concentration increased. Biosorption equilibrium was established within 30 min, which was well described by the Langmuir and Freundlich adsorption isotherms. The maximum amount of heavy metals (qmax) adsorbed at equilibrium was 49.97, 39.99, 33.81, 25.73 and 19.56 mg/g BGH biomass for Pb, Cd, Zn, Cu and Ni, respectively. The biosorption capacities were found to be pH dependent and the maximum adsorption occurred at the solution pH 5. Efficiency of the biosorbent to remove Pb from binary and ternary solutions with Cd, Cu, Ni and Zn was the same level as it was when present singly. The presence of Pb in the binary and ternary solutions also did not significantly affect the sorption of other metals. Breakthrough curves for continuous removal of Pb from single, binary and ternary metal solutions are reported for inlet-effluent equilibrium. Complete desorption of Pb and other metals in single and multimetal solutions was achieved with 0.1 M HCl in both shake flask and fixed bed column studies. This is the first report of removal of the highly toxic Pb, Cd, and other heavy metals in binary and ternary systems based on the biosorption by an agrowaste. The potential of application for the treatment of solutions containing these heavy metals in multimetal solutions is indicated.  相似文献   

5.
Abstract

In this study, hazelnut shell and walnut shell which are the agricultural wastes existent abundantly in many countries were pyrolyzed at different temperatures in the temperature range of 400–700?°C in order to optimize the physicochemical properties of biochars. The biochars with large surface area were used to removal of lead (Pb2+) ions, one of the most important heavy metal pollutant, from aqueous solutions. The characterization of raw biomass and also biochars produced by pyrolysis were performed using FT-IR, BET, SEM, partial and elemental analysis techniques. In order to determine the adsorption characteristics of both biochars, batch adsorption experiments were carried out under different experimental conditions. The optimum conditions were determined by investigating the effect of adsorption parameters (initial heavy metal concentration, temperature, adsorbent amount, pH, contact time and mixing speed) for efficient removal of Pb2+ ions from aqueous solution. The experimental results were investigated in terms of Langmuir, Freundlich and Temkin isotherm models. Together with the calculated thermodynamic parameters, the adsorption mechanism was tried to be explained. In order to determine the kinetic model of the adsorption process, the experimental data were applied to pseudo first-order, pseudo second-order and intra-particle diffusion model, and the model constants were investigated.  相似文献   

6.
Free metal ions in aqueous and terrestrial systems strongly influence bioavailability and toxicity. Most analytical techniques determine the total metal concentration, including the metal ions bound by dissolved organic matter. Ion activity can be measured with ion-specific electrodes (ISEs) for some metals, but an electrode for Zn is not commercially available. As a result, very few data are available on Zn binding by natural dissolved organic matter. The aim of this study is to determine free Zn concentrations in purified humic acid solutions using the recently developed Donnan membrane technique. However, several analytical aspects of the Donnan membrane technique had to be clarified before reliable data could be composed. Cd was chosen for validation. This study shows that free Cd concentrations as measured by the Donnan membrane technique agreed well with Cd ISE measurements. It is also shown that the Donnan membrane technique could be used at high pH. The Donnan membrane technique provided consistent results in a range of p[Cd2+] = 3-9 and p[Zn2+] = 3-8 at pH 4, 6, and 8. Metal speciation in humic acid solutions was also calculated with the consistent NICA-Donnan model using generic parameters. The model could excellently describe the experimental data without adjusting any of the parameters (R2Cd = 0.971, R2Zn = 0.988).  相似文献   

7.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

8.
蔗渣经多氨基改性处理后,得到多氨基改性蔗渣吸附剂。考察了多氨基改性蔗渣吸附剂对模拟废水中Pb2+、Zn2+、Cd2+、Cu2+的吸附性能,主要包括吸附时间、溶液pH值和温度对吸附量的影响以及吸附等温式的研究。研究表明,在实验范围内,Pb2+的吸附平衡时间为12h,适宜吸附Pb2+的pH值范围在4~5,Pb2+的最大吸附量为34.96mg/g;Zn2+的吸附平衡时间为20h,适宜吸附Zn2+的pH值在6.2左右,Zn2+的最大吸附容量为2.24mg/g;Cd2+的吸附平衡时间为20h,适宜吸附Cd2+的pH值在5.0左右,Cd2+的最大吸附容量为10.40mg/g;Cu2+的吸附平衡时间为20h;适宜吸附Cu2+的pH值在5.0左右;Cu2+在不同温度下的最大吸附容量为2.60mg/g。多氨基改性蔗渣对Pb2+、Zn2+、Cd2+、Cu2+的吸附均可用Freundlich方程和Langmuir方程描述。  相似文献   

9.
Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had shown better performance than Lewatit TP 207 resin for the removal of metals. The change of the ionic strength of the solution exerts a slight influence on the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+). The presence of low ionic strength or low concentration of NaNO(3) does not have a significant effect on the ion-exchange of these metals by the resins. We conclude that Lewatit CNP 80 can be used for the efficient removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions.  相似文献   

10.
Sorption potential of waste short hemp fibers for Pb(2+), Cd(2+) and Zn(2+) ions from aqueous media was explored. In order to assess the influence of hemp fiber chemical composition on their heavy metals sorption potential, lignin and hemicelluloses were removed selectively by chemical modification. The degree of fiber swelling and water retention value were determined in order to evaluate the change in accessibility of the cell wall components to aqueous solutions due to the fiber modification. The effects of initial ion concentration, contact time and cosorption were studied in batch sorption experiments. The obtained results show that when the content of either lignin or hemicelluloses is progressively reduced by chemical treatment, the sorption properties of hemp fibers are improved. Short hemp fibers are capable of sorbing metal ions (Pb(2+), Cd(2+) and Zn(2+)) from single as well as from ternary metal ion solutions. The maximum total uptake capacities for Pb(2+), Cd(2+) and Zn(2+) ions from single solutions are the same, i.e. 0.078mmol/g, and from ternary mixture 0.074, 0.035 and 0.035mmol/g, respectively.  相似文献   

11.
以含单宁量98.50%的没食子酸为原料,通过磺化一胺甲基化反应制得改性没食子酸,研究了改性没食子酸对金属Cu2+和Pb2+的吸附沉淀,以及初始溶液pH值、金属溶液初始质量浓度、平衡吸附温度对Cu2+和pb2+吸附沉淀容量的影响及规律.结果表明,吸附沉淀剂对Cu2+、Pb2+的吸附平衡符合Freundlich方程,pH值和初始质量浓度对吸附沉淀量的影响最显著.综合认为改性没食子酸对Cu2+、Pb2+的吸附沉淀机理基本一致.  相似文献   

12.
A biomatrix was prepared from rice husk, a lignocellulosic waste from agro-industry, for the removal of several heavy metals as a function of pH and metal concentrations in single and mixed solutions. The biomatrix was characterized using scanning electron microscope and Fourier transform infrared spectroscopy, which indicated the presence of several functional groups for binding metal ions. Different experimental approaches were applied to show mechanistic aspects, especially the role of calcium and magnesium present in the biomatrix in ion exchange mechanism. The ultimate maximum adsorption capacity obtained from the Langmuir isotherm increases in the order (mmol/g): Ni (0.094), Zn (0.124), Cd (0.149), Mn (0.151), Co (0.162), Cu (0.172), Hg (0.18) and Pb (0.28). The sorption of Cr(III) onto biomatrix at pH 2 was 1.0 mmol/g. Speciation of chromium, cadmium and mercury loaded on the biomatrix was determined by X-ray photoelectron spectroscopy. The biomatrix has adsorption capacity comparable or greater to other reported sorbents.  相似文献   

13.
The present study is targeted on the effect of pH on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO(2), has been investigated at pH values 2, 4, 7, 8 and 10. Modeling of metal species at the studied pH values has been performed and speciation is used as a tool for discussing the photodeposition. The decreasing order of metal deposition at pH 2 and 4 was found to be Pb(II)>Cu(II)>Ni(II) congruent with Zn(II). In the neutral and alkaline pH conditions (pH 7, 8 and 10) the order was Cu(II)>Zn(II)>Ni(II)>Pb(II).  相似文献   

14.
Interaction of pesticides with humic compounds and their metal complexes   总被引:1,自引:0,他引:1  
The interaction of pesticides with humic compounds (humic and fulvic acids) and with their metal complexes was studied potentiometrically and radiometrically, using the pesticides Aldicarb and Methomyl, and the herbicide Ametryne. The metal humate or fulvate complexes were prepared by precipitation of the complexes using Co2+, Zn2+, or Sr2+. The results indicated that Aldicarb, Methomyl, and Ametryne form stable complexes with humic acid (HA) and fulvic acid (FA). The complexation strength increases in the order Aldicarb ≤ Methomyl < Ametryne. The complexes of Aldicarb and Methomyl with HA and FA are stronger than the metal humate/fulvate complexes with Co2+, Zn2+, and Sr2+, and these pesticides displace the metal ions. Ametryne adds to the metal humate/fulvate by physical adsorption or ligand exchange. The complexation of Aldicarb and Methomyl with humic compounds causes the release of radionuclides (60Co, 65Zn, 90Sr) from the soil organic matter to the solution. The pH exerts a decisive effect on the complexation of the pesticides with humic compounds. Published in Russian in Radiokhimiya, 2006, Vol. 48, No. 4, pp. 377–383. The text was submitted by the authors in English.  相似文献   

15.
Biosorption of heavy metals can be an effective process for the removal of heavy metal ions from aqueous solutions. In this study, the adsorption properties of lichen biomass of Cladonia rangiformis hoffm. for copper(II) were investigated by using batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed and contact time on biosorption efficiency were studied. In the experiments the optimum pH value was found out 5.0 which was the native pH value of solution. The experimental adsorption data were fitted to the Langmuir adsorption model. The highest metal uptake was calculated from Langmuir isotherm and found to be 7.6923 mg Cu(II)/g inactivated lichen at 15 degrees C. The results indicated that the biomass of C. rangiformis is a suitable biosorbent for removing Cu(II) from aqueous solutions.  相似文献   

16.
Funalia trogii biomass was immobilized in Ca-alginate gel beads. The live and heat inactivated immobilized forms were used for the biosorption of Hg2+, Cd2+ and Zn2+ ions by using plain Ca-alginate gel beads as a control system. The effect of pH was investigated and the maximum adsorption of metal ions on the Ca-alginate and both live and inactivated immobilized fungal preparations were observed at pH 6.0. The temperature change between 15 and 45 degrees C did not affect the biosorption capacity. The biosorption of Hg2+, Cd2+ and Zn2+ ions on the Ca-alginate beads and on both immobilized forms was studied in aqueous solutions in the concentration range of 30-600 mg/L. The metal biosorption capacities of the heat inactivated immobilized F. trogii for Hg2+, Cd2+ and Zn2+ were 403.2, 191.6, and 54.0 mg/g, respectively, while Hg2+, Cd2+ and Zn2+ biosorption capacities of the immobilized live form were 333.0, 164.8 and 42.1 mg/g, respectively. The same affinity order on a molar basis was observed for single or multi-metal ions (Hg2+ > Cd2+ > Zn2+). The Langmuir and the Freundlich type models were found to exhibit good fit to the experimental data. The experimental data were analyzed using the first-order (Langergren equations) and the second order (Ritchie equations). The experimental biosorption capacity with time is found to be best fit the second-order equations. The alginate-fungus system could be regenerated by washing with a solution of hydrochloride acid (10 mM). The percent desorption achieved was as high as 97. The biosorbents were reused in five biosorption-desorption cycles without significant loss of their initial biosorption capacity.  相似文献   

17.
Cu2+ ions can cause serious injuries to human health, at both high and low concentrations. Therefore, it is important not only to remove Cu2+ ions from aqueous media, but also to develop analytical methods for their accurate determination at low concentrations. Magnetite is one of the most used sorbents for Cu2+ removal. This work aims at synthesizing magnetite nanoparticles and at evaluating their adsorption capacity toward Cu2+ ions in aqueous solution by means of atomic absorption spectroscopy. Magnetite nanoparticles were characterized by means of a vibrational magnetometer, Fourier transformer infrared spectrum (FTIR), x-ray diffraction (XRD) and Thermal gravimetric analysis (TGA). Magnetic nanoparticles showed Ms values of 52 and 62?emu/g. By taking into consideration the precipitation of Cu(OH)2 as a function of pH in the evaluation of the adsorption capacity of magnetite, we found that the maximum Cu2+ adsorption occurs at pH?=?7 and that the adsorption equilibrium of the two samples is reached at 490 and 445?min. The use of blank solution avoids the overestimation of the adsorption capacity due to the presence of insoluble Cu(OH)2. Finally, two models are considered as a liquid/solid phase reaction, pseudo-first- and pseudo-second-order reaction. Batch adsorption kinetics agrees with a pseudo-second-order model, suggesting that chemisorption is the rate-limiting step.  相似文献   

18.
PAAS高吸水树脂对重金属离子盐溶液的吸液及吸附性能   总被引:1,自引:1,他引:1  
用聚丙烯酸高吸水树脂(PAAS)研究了单一和混合重金属离子硝酸盐溶液中的吸液和吸附性能.在Pb2 、Ni2 、Cd2 、Zn2 、Mn2 和Cu2 的一、二元溶液中,PAAS的吸液倍率随时间延长而增加,约50min达吸液平衡,一元金属离子溶液中平衡吸液倍率为160~190g/g,而对Cr3 溶液,最大为120g/g;二元金属离子混合溶液中平衡吸液倍率都在150~180g/g之间,有Cr3 存在时平衡吸液倍率最小.对上述单一金属离子的吸附量随时间延长而增加,约180min达吸附平衡,平衡吸附量顺序为:Pb2 >Cd2 >Ni2 >Cu2 >Zn2 >Mn2 >Cr3 .对二元混合金属离子溶液,吸附量随时间增加而增加,30min后逐渐变慢,约70min后达吸附平衡.  相似文献   

19.
Surface modification of clay minerals has become increasingly important for improving the practical applications of clays such as fillers and adsorbents. An investigation was carried out on the surface modification of sepiolite with aminopropylsilyl groups in 3-aminopropyltriethoxysilane (3-APT). The zeta potential of the modified sepiolite suspensions was measured as a function of initial electrolyte concentration and equilibrium pH using a Zeta Meter 3.0 for modified sepiolite. The utility of the 3-APT-modified sepiolite was investigated as an adsorbent for removal of various heavy metal ions such as Fe, Mn, Co, Zn, Cu, Cd and Ni from aqueous solutions. The effects of various factors on the adsorption, such as pH, ionic strength and temperature of the solution were studied. The results showed that the amount adsorbed increases with solution pH in the pH range of 1.5 and 7.0; indicated that the modified sepiolite adsorbed Fe and Mn ions more than other metal ions such as Co, Zn, Cu, Cd and Ni. It was found that the temperature had an important effect on metal ion adsorption by the modified sepiolite. The adsorption isotherm has been determined and data have been analyzed according to the Langmuir and Freundlich models.  相似文献   

20.
Removal of some divalent heavy metal ions (Cu(2+), Zn(2+), Pb(2+), Cd(2+), Co(2+)) from aqueous solutions using carbon nanotube (CNT) sheets was performed. CNT sheets were synthesized by chemical vapor deposition of cyclohexanol and ferrocene in nitrogen atmosphere at 750°C, and oxidized with concentrated nitric acid at room temperature and then employed as adsorbent for water treatment. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of heavy metal ions by oxidized CNT sheets. The obtained results demonstrated that the oxidized CNT sheets can be used as an effective adsorbent for heavy metal ions removal from water. It was found out that kinetics of adsorption varies with initial concentration of heavy metal ions. Preference of adsorption onto the oxidized CNT sheets can be ordered as Pb(2+)>Cd(2+)>Co(2+)>Zn(2+)>Cu(2+). Using the oxidized CNT sheets, waste water treatment without CNT leakage into water is economically feasible. Therefore, CNT sheets have good potential application in environmental protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号