首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Thin solid films》1987,155(2):317-324
An electrochemical method has been developed for the precise and accurate determination of CuInSe2 compositions. The overall errors for the determination of the constituent elements in milligram samples are typically found to be 0.1%–0.2%. This simple and accurate method is particularly suitable for determining CuInSe2 thin film compositions.  相似文献   

2.
Radu A  Meir AJ  Bakker E 《Analytical chemistry》2004,76(21):6402-6409
A numerical solution for the prediction of the time-dependent potential response of a polymeric-based ion-selective electrode (ISE) is presented. The model addresses short- and middle-term potential drifts that are dependent on changes in concentration gradients in the aqueous sample and organic membrane phase. This work has important implications for the understanding of the real-time response behavior of potentiometric sensors with low detection limits and with nonclassical super-Nernstian response slopes. As a model system, the initial exposure of membranes containing the well-examined silver ionophore O,O' '-bis[2-(methylthio)ethyl]-tert-butylcalix[4]arene was monitored, and the large observed potential drifts were compared to theoretical predictions. The model is based on an approximate solution of the diffusion equation for both aqueous and organic diffusion layers using a numerical scheme (finite difference in time and finite elements in space). The model may be evaluated on the basis of experimentally available parameters and gives time-dependent information previously inaccessible with a simpler steady-state diffusion model. For the cases studied, the model gave a very good correlation with experimental data, albeit with lower than expected diffusion coefficients for the organic phase. This model may address numerous open questions regarding the response time and memory effects of low-detection-limit ion-selective electrodes and for other membrane electrodes where ion fluxes are relevant.  相似文献   

3.
The variability of selectivity coefficients, resulting from potential changes over time and the concentration ratio of primary to interfering ions, impedes many practical applications of ion-selective electrodes (ISEs). Existing theoretical interpretations of ISE selectivity are restricted by severe assumptions, such as steady state and electroneutrality, which hinder theorizing on this problem. For this reason, for the first time, the Nernst-Planck-Poisson equations are used to predict and visualize the selectivity variability over time and the concentration ratio. Special emphasis is placed on the non-Nernstian response in the measurements with liquid-ion-exchanger- and neutral-carrier-based ISEs. The conditions under which measured selectivity coefficients are true (unbiased) are demonstrated.  相似文献   

4.
5.
A model that describes divalent cation responses of liquid membrane ion-selective electrodes based on acidic ionophores and ionic sites is presented. Response slopes for membranes with ionophore and anionic sites are predicted to change from Nernstian to apparently "twice-Nernstian" and then back to Nernstian again as the pH of the sample solution decreases. A maximum measuring range for apparently "twice-Nernstian" responses is expected for membranes with 50 mol % anionic sites relative to the ionophore. On the other hand, membranes with ionophore and cationic sites are expected to give only Nernstian responses, either to divalent cations at high pH or to H(+) at low pH. The validity of the present model has been confirmed experimentally with the two Ba(2+)-selective carboxylate ionophores monensin and lasalocid and the Ca(2+)-selective organophosphate ionophore bis(2-heptylundecyl) phosphate. Addition of anionic sites gave apparently "twice-Nernstian" slopes for monensin at pH 7.0 (56.6 mV/decade), for lasalocid at pH 4.0 (53.3 mV/decade), and for bis(2-heptylundecyl) phosphate at pH 3.5 (53.6 mV/decade). Membranes with cationic sites showed only pH responses at the respective pH. The apparently "twice-Nernstian" responses as discussed here are the first examples of super-Nernstian responses that can be explained with a quantitative model based on thermodynamic equilibria.  相似文献   

6.
Silicone rubber (SR)-based solid-contact ion-selective electrodes (ISEs) have been prepared for the first time with an electrically conducting polymer as the solid-contact (SC) layer. The Ca(2+)- and Ag(+)-selective electrodes were based on the ionophores ETH 1001 and o-xylylenebis(N,N-diisobutyl dithiocarbamate), respectively, integrated in room temperature vulcanizing silicone rubber (RTV 3140). The SC consisted of a polyaniline nanoparticle dispersion, which was found to considerably lower the impedance of the SCISEs in comparison to the SR-based coated wire electrodes (CWE). For the CaSCISEs, the bulk membrane resistance decreased from 700 MΩ (CaCWE) to 35 MΩ. Both the Ca(2+)- and Ag(+)-selective SCISEs exhibited nanomolar detection limits with fast Nernstian responses down to 10(-8) M. The potential response of the SCISEs was not influenced by light. The selectivities of the CaSCISEs were similar and for the AgSCISE better than their plasticized PVC-based analogues. Thus, SR seems to be a viable alternative to PVC membranes in ISE applications that require low water uptake, good adhesion, and robust and fast potential responses at submicromolar sample concentrations.  相似文献   

7.
Ion-selective membranes operated in a thin layer coulometric detection mode have previously been demonstrated to exhibit attractive characteristics in view of realizing sensors without the need for frequent recalibration. In this methodology, the analyte ion is exhaustively removed across an ion-selective membrane by an applied potential, and the resulting current is integrated to yield the coulomb number and hence the amount of analyte originally present in the sample. This exhaustive process, however, places greater demands on the selectivity of the membrane compared to direct potentiometry, since the level of interference will increase as the analyte depletes. We evaluate here a double pulse protocol to reduce the level of interference, in which the sample is electrolyzed once again after the initial coulometric detection pulse. Since the analyte ion is no longer present at significant concentrations during the second pulse, but an interfering ion of high concentration did not appreciably deplete, the second electrolysis step may be used to partially compensate for undesired interference. These processes are here evaluated by numerical simulation for ions of the same charge, demonstrating that the resulting coulomb number may indeed be reduced for systems of limited selectivity. The improvement in operational selectivity relative to uncompensated coulometry is found to be ca. 6-fold. The methodology is successfully demonstrated experimentally with a calcium selective membrane and tetraethylammonium as a model interfering agent, and the observed relative errors after background compensation can be favorably compared to that in direct potentiometry where no sample depletion occurs.  相似文献   

8.
The extent of optimization of the lower detection limit of ion-selective electrodes (ISEs) can be assessed with an elegant new method. At the detection limit (i.e., in the absence of primary ions in the sample), one can observe a reproducible change in the membrane potential upon alteration of the aqueous diffusion layer thickness. This stir effect is predicted to depend on the composition of the inner solution, which is known to influence the lower detection limit of the potentiometric sensor dramatically. For an optimized electrode, the stir effect is calculated to be exactly one-half the value of the case when substantial coextraction occurs at the inner membrane side. In contrast, there is no stir effect when substantial ion exchange occurs at the inner membrane side. Consequently, this experimental method can be used to determine how well the inner filling solution has been optimized. A rotating disk electrode was used in this study because it provides adequate control of the aqueous diffusion layer thickness. Various ion-selective membranes with a variety of inner solutions that gave different calculated concentrations of the complex at the inner membrane side were studied to evaluate this principle. They contained the well-examined silver ionophore O,O' '-bis[2-(methylthio)ethyl]-tert-butylcalix[4]arene, the potassium ionophore valinomycin, or the iodide carrier [9]mercuracarborand-3. Stir effects were determined in different background solutions and compared to theoretical expectations. Correlations were good, and the results encourage the use of such stir-effect measurements to optimize ISE compositions for real-world applications. The technique was also found to be useful in estimating the level of primary ion impurities in the sample. For an iodide-selective electrode measured in phosphoric acid, for example, apparent iodide impurity levels were calculated as 5 x 10(-10) M.  相似文献   

9.
We are studying the binding of ligands to macromolecules by using ligand ion selective electrodes as transducers. The picrate-bovine albumin interaction is examined in detail as a model system. A picrate ion selective electrode is used to monitor the free picrate concentration directly in the presence of albumin and bound ligand. The binding parameters are estimated and the effect of protein concentration, ionic strength, pH, and temperature is studied. The experimental data are interpreted with a specially designed computer program that performs nonlinear least-squares fitting of the generalized Scatchard model with an infinite number of classes of binding sites directly to the raw potentiometric data. The binding parameters (binding constant and maximum number of ligands that can be bound), the nonspecific binding as well as their standard deviations are estimated by this program. The principles described can be used for the potentiometric study of any ligand-binder interaction.  相似文献   

10.
Polymer membrane ion-selective electrodes containing lipophilic ionophores are traditionally interrogated by zero current potentiometry, which, ideally, gives information on the sample activity of ionic species. It is shown here that a discrete cathodic current pulse across an H (+)-selective polymeric membrane doped with the ionophore ETH 5294 may be used for the chronopotentiometric detection of pH in well-buffered samples. However, a reduction in the buffer capacity leads to large deviations from the expected Nernstian response slope. This is explained by the local depletion of hydrogen ions at the sample-membrane interface as a result of the galvanostatically imposed ion flux in direction of the membrane. This depletion is found to be a function of the total acidity of the sample and can be directly monitored chronopotentiometrically in a flash titration experiment. The subsequent application of a baseline potential pulse reverses the extraction process of the current pulse, allowing one to interrogate the sample with minimal perturbation. In one protocol, total acidity is found to be proportional to the magnitude of applied current at the flash titration end point. More conveniently, the square root of the flash titration end point time observed at a fixed applied current is a linear function of the total acid concentration. This suggests that it is possible to perform rapid localized pH titrations at ion-selective electrodes without the need for volumetric titrimetry. The technique is explored here for acetic acid, MES and citric acid with promising results. Polymeric membrane electrodes based on poly(vinyl chloride) plasticized with o-nitrophenyl octyl ether in a 1:2 mass ratio may be used for the detection of acids of up to ca. 1 mM concentration, with flash titration times on the order of a few seconds. Possible limitations of the technique are discussed, including variations of the acid diffusion coefficients and influence of electrical migration.  相似文献   

11.
Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.  相似文献   

12.
13.
The goal was to identify formulations for use in valinomycin K(+) ion-selective electrodes that could routinely achieve a detection limit of <10(-6) M, even after repeated use and exposure at higher K+ activity (0.1 M) and without the requirement for special pretreatment or conditioning in low K+ activity (10(-3) M). Electrodes that would be characterized by high potential stability were sought in this work. Valinomycin-containing membranes with diffusion coefficient of approximately 10(-11) cm(2) s(-1), formulated from methacrylic/acrylic polymers with or without plasticizer, were compared with plasticized PVC membranes (diffusion coefficient 10(-8) cm(2) s(-1)). The methacrylic/acrylic membranes without plasticizer were shown to give an order of magnitude lower detection limit, when compared with PVC-dioctyl sebacate and o-nitrophenyl octyl ether plasticized methacrylic/acrylic polymers under the same conditions, highlighting the influence of plasticizer on the detection limit. As predicted from current theoretical derivation, the inner contacting layer in the ion-selective electrode construction was shown to be highly influential in maintaining the detection limit below 10(-6) M with use and with poly(pyrrole) providing the inner contact ion-to-electron transduction function, a further order of magnitude improvement in the lower detection limit could be maintained for both chloride and hexacyanoferrate doped poly(pyrrole), when 2% ionophore was employed in the ion-selective membrane. This formulation showed extraordinary stability and reproducibility in terms of measurement range and drift over extended measurement testing, with close to Nernstian slopes. At higher ionophore concentrations (4%), the apparent selectivity of the electrode was improved at the expense of detection limit and the nature of the poly(pyrrole) dopant ion became important in determining the dominant exchange processes at the poly(pyrrole)/ion-selective membrane interface.  相似文献   

14.
Singly charged amines and sulfonic acids as cationic and anionic aliphatic model substances, respectively, were detected in capillary electrophoresis with all-solid-state ion-selective electrodes. The sensitivity for these compounds is a function of their lipophilicity. The signal detected is generally greater for molecules with a larger organic part. The utility of the method is further demonstrated by the detection of a group of aromatic compounds in the form of the anionic analgesics (S)-(+)-2-(4-isobutylphenyl)propionic acid, 2-[(2,6-dichlorophenyl)amino]benzeneacetic acid, and o-acetylsalicylic acid. Further determined were the artificial sweeteners cyclamate, acesulfame-K, and saccharin. Detection limits for the different substances were between 2.5 × 10(-)(6) and 1 × 10(-)(5) M.  相似文献   

15.
The span and range of an ion-selective electrode (ISE) has been identified by IUPAC as a potential or activity difference between the upper and lower detection limits of the electrode. Once the span is known, the ultimately attainable detection limit of the ISE can be calculated using its theoretical response slope. In this paper, we propose an original method for the determination of the ultimate span and response range of ISEs. The simple measurement of span is recommended to aid the fast screening of novel ionophores and help to focus optimization processes to the most promising candidates. The measurement of span is combined with a generally applicable procedure for the determination of the three seminal parameters of ISEs: the response slope, the ultimate selectivity coefficients, and detection limit. In the proposed procedure, following the span measurement, two subsequent exponential dilution experiments are completed in which the responses of the electrode for the primary and the interfering ions are tested using a solution of a discriminated ion and deionized water as diluting electrolytes in consecution. The advantages and the practical usefulness of the proposed methods and procedures are demonstrated through the evaluation of the performance characteristics of novel and well-characterized ionophore-based potassium and calcium sensors.  相似文献   

16.
Amemiya S  Bard AJ 《Analytical chemistry》2000,72(20):4940-4948
Voltammetric ion-selective micropipet electrodes for use in scanning electrochemical microscopy (SECM) for detection of potassium ion were fabricated. These used pulled borosilicate capillaries with tip orifice radii of 0.7-20 microm with silanized inner walls filled with a solution of 10 mM valinomycin and 10 mM ETH 500 in dichloroethane. The electrodes were characterized by determining the steady-state tip current for K+ concentrations of 0.05-0.3 mM. The tips were used in the SECM feedback and generation-collection modes to study K+ transfer through gramicidin channels in a horizontal bilayer lipid membrane (glycerol monooleate).  相似文献   

17.
A peroxidase model electrode was devised for reagentless sensing of hydrogen peroxide (H2O2). A small model molecule, which mimics the vicinity of the reaction center of a redox enzyme, can communicate electrochemically with an electrode. Heme nonapeptide (MW congruent to 1600) having peroxidase activity was adopted as a peroxidase model compound and was covalently immobilized on a tin oxide (SnO2) electrode as a roughly monomolecular layer. The modified electrode thus obtained responded to H2O2 at concentrations down to 10(-6) M without electron mediator or promoter, at a mild potential of +150 or +300 mV vs Ag/AgCl. In a batch system, the response reached a steady state in a few seconds. Measurements were possible also in a flow system with an assay time of 0.5-1.0 min/sample. The steady-state response of the electrode was kinetically analyzed.  相似文献   

18.
A generalized model that describes apparently "non-Nernstian" equilibrium responses of ionophore-based ion-selective electrodes (ISEs) is presented. It is formulated for primary and secondary ions of any charges that enter the membrane phase and independently form complexes with the ionophore, respectively. Equations for the phase boundary potential model were solved numerically to obtain whole response curves as a function of the sample activity of the primary ion, and analytical solutions could be obtained for apparently non-Nernstian response sections in these response curves. Ionophore-based ISEs can give three types of apparently non-Nernstian equilibrium responses, i.e., apparently "super-Nernstian", "inverted-Nernstian", and "sub-Nernstian" responses. The values of the response slopes depend on the charge numbers of the primary and secondary ions and on the stoichiometries of their complexes with the ionophore. The theoretical predictions for super-Nernstian responses agree well with the experimental results obtained with ISEs based on acidic ionophores or metalloporphyrin ionophores. Also, theoretical response curves with inverted-Nernstian slopes were found to be similar in character to the pH responses of Ca2+-selective electrodes based on organophosphate ionophores, which have been known to exhibit a so-called "potential dip". The quantitative understanding of apparently non-Nernstian response slopes presented here provides an insight into ionophore-analyte complexation processes in ISE membranes and should be helpful for the design of new ionophores.  相似文献   

19.
The electrochemical behaviour of Ir oxide films, grown in neutral PBS saline solution has been examined in relation to their use as neural stimulating electrodes. It is shown that, if adequate growing conditions are chosen, this material is suitable for use as a neural prosthesis, since it is able to pass high values of charge density in a very reversible way, therefore without generating new products to the solution.This paper was accepted for publication after the 1995 Conference of the European Society of Biomaterials. Oporto, Portugal, 10–13 September.  相似文献   

20.
Zhou M  Gan S  Cai B  Li F  Ma W  Han D  Niu L 《Analytical chemistry》2012,84(7):3480-3483
We report on a novel material, tetrakis(4-chlorophenyl)borate (TB(-)) anion doped nanocluster films, as the solid contact (SC) for producing well-defined, electrochemically reversible, and nonpolarizable double interfaces on it. Detailed studies have unambiguously revealed that, for the first time, the developed SC can fully overcome all the signal stability problems of ion-selective electrodes (ISEs), offering a reliable and universal platform for the development of high quality SC-ISEs. As an exemplification, the developed monolayer-protected cluster (MPC) based K(+)-ISEs have advantages of excellent analytical performances, e.g., the low potential drift (10.1 ± 0.3 μV h(-1) over 72 h measured in 0.1 M KCl and 10.8 ± 0.5 μV h(-1) over 96 h rechecked in 0.1 M KCl after 1 month) and the stable and reproducible linear range, sensitivity, and standard potential (few changes within the first 6 weeks). This evidence suggests that the developed MPC films are the most promising SC transducers among all the reported ones to the best of our knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号