首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose nonlinear observers for a class of biotechnological processes. These observers are an extension of the open loop asymptotic observers (observers with unknown inputs) devoted to biotechnological systems for which some parts of the model are unknown. We take benefit of the additional outputs which are (nonlinear) functions of the state to design a closed loop observer. The global convergence of these nonlinear observers is proven. We use these observers to design interval based observers which predict guaranteed intervals in which the state is lying. We run simultaneously a broad set of interval observers and we select the best ones. The method is illustrated with a model describing the bioconversion of a substrate using micro-organisms in a bioreactor.  相似文献   

2.
This paper is concerned with the problem of positive observer synthesis for positive systems with both interval parameter uncertainties and time delay. Conventional observers may no longer be applicable for such kind of systems due to the positivity constraint on the observers, and they only provide an estimate of the system state in an asymptotic way. A pair of positive observers with state‐bounding feature is proposed to estimate the state of positive systems at all times in this paper. A necessary and sufficient condition for the existence of desired observers is first established, and the observer matrices can be obtained easily through the solutions of a set of linear matrix inequalities (LMIs). Then, to reduce the error signal between the system state and its estimates, an iterative LMI algorithm is developed to compute the optimized state‐bounding observer matrices. Finally, a numerical example is presented to show the effectiveness and applicability of the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper deals with state estimation problem for uncertain continuous‐time systems. A numerical treatment is proposed for designing interval observers that ensures guaranteed upper and lower bounds on the estimated states. In order to take into account possible perturbations on the system and its outputs, a new type of interval observers is introduced. Such interval observers consist of two coupled general Luenberger‐type observers that involve dilatation functions. In addition, we provide an optimality criterion in order to find optimal interval observers that lead to tight interval error estimation. The proposed existence and optimality conditions are expressed in terms of linear programming. Also, some illustrative examples are given. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the problem of designing functional interval observers for a class of non‐linear fractional‐order systems with bounded uncertainties. First, interval observers for linear functions of the state vector of the considered system are designed. Then, conditions for the existence of such interval observers are established and an effective algorithm for computing unknown observer matrices is provided in this paper. Finally, numerical examples and simulation results are given to illustrate the effectiveness of the proposed design method.  相似文献   

5.
This paper deals with fault detection for nonlinear continuous-time systems. A procedure based on interval analysis is proposed to build a guaranteed qLPV (quasi-Linear Parameter-Varying) approximation of the nonlinear model. The interval qLPV approximation makes it possible to derive two point observers which estimate respectively the lower and the upper bound of the state vector using cooperativity theory. A set guaranteed to contain the actual value of the residual is then designed. The modelling uncertainties and measurement errors are taken into account at the design stage. The proposed methodology is illustrated through numerical simulations.  相似文献   

6.
This article considers the problem of estimating a partial set of the state vector and/or unknown input vector of linear systems driven by unknown inputs and time-varying delay in the state variables. Three types of reduced-order observers, namely, observers with delays, observers without internal delays and delay-free observers are proposed in this article. Existence conditions and design procedures are presented for the determination of parameters for each case of observers. Numerical examples are presented to illustrate the design procedures.  相似文献   

7.
This paper studies the problem of designing interval observers for a family of discrete‐time nonlinear systems subject to parametric uncertainties and external disturbances. The design approach states that the interval observers are constituted by a couple of preserving order observers, one providing an upper estimation of the state while the other provides a lower one. The design aim is to apply the cooperative and dissipative properties to the discrete‐time estimation error dynamics in order to guarantee that the upper and lower estimations are always above and below the true state trajectory for all times, while both estimations asymptotically converge towards a neighborhood of the true state values. The approach represents an extension to the original method proposed by the authors, which focuses on the continuous‐time nonlinear systems. In some situations, the design conditions can be formulated as bilinear matrix inequalities (BMIs) and/or linear matrix inequalities (LMIs). Two simulation examples are provided to show the effectiveness of the design approach.  相似文献   

8.
The main purpose of this paper is to state some sufficient conditions for global synchronization of chaotic maps. The synchronization is viewed as a state reconstruction problem which is tackled by polytopic observers. Unlike most standard observers, polytopic observers can account for a special property of chaotic dynamics. Indeed, it is shown that many chaotic maps can be described in a so-called convexified form, involving a time-varying parameter which depends on the chaotic state vector. Such a form makes it possible to incorporate knowledge on the structure of the compact set wherein the parameter lies. This set depends implicitly on the structure of the chaotic attractor. It is proved that the conservatism of the polyquadratic stability conditions for the state reconstruction, stated in a companion paper, can be reduced when the corresponding Linear Matrix Inequalities involve the vertices of the minimal convex hull of this set. Theoretical developments along with special emphasis on computational aspects are provided and illustrated in the context of adaptive synchronization.  相似文献   

9.
This paper addresses the problem of interval observer design for unknown input estimation in linear time-invariant systems. Although the problem of unknown input estimation has been widely studied in the literature, the design of joint state and unknown input observers has not been considered within a set-membership context. While conventional interval observers could be used to propagate with some additional conservatism, unknown inputs by considering them as disturbances, the proposed approach allows their estimation. Under the assumption that the measurement noise and the disturbances are bounded, lower and upper bounds for the unmeasured state and unknown inputs are computed. Numerical simulations are presented to show the efficiency of the proposed approach.  相似文献   

10.
Two new types of observers, termed initial- and lagging-state observers, are introduced and their performance characteristics analyzed. The first of these permits exact reconstruction of the initial state via sequential processing of measurement data. The second provides sequential state reconstruction where the estimate is permitted to lag the most recent measurement by a fixed time interval. Both observer types are useful for exact state reconstruction during the transient period of an identity observer where the latter is not able to accurately reconstruct the state. Conditions for asymptotic stability are developed, and extensions are indicated.  相似文献   

11.
This paper deals with the design of interval observers for singularly perturbed linear systems. The full-order system is first decoupled into slow and fast subsystems. Then, using the cooperativity theory, an interval observer is designed for the slow and fast subsystems assuming that the measurement noise and the disturbances are bounded and the singular perturbed parameter is uncertain. This decoupling leads to two observers that estimate the lower and upper bounds for the feasible state domain. A numerical example shows the efficiency of the proposed technique.  相似文献   

12.
In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.  相似文献   

13.
The estimation problem for uncertain time-delay systems is addressed. A design method of reduced-order interval observers is proposed. The observer estimates the set of admissible values (the interval) for the state at each instant of time. The cases of known fixed delays and uncertain time-varying delays are analysed. The proposed approach can be applied to linear delay systems and nonlinear time-delay systems in the output canonical form. It involves the properties of quasi-monotone/Metzler/cooperative systems. In this framework, it is shown that if under a suitable coordinate transformation the delay-free subsystem is cooperative, then the delayed estimation error dynamics inherits this property. The conditions to find the observer gains are formulated in the form of LMI. The framework efficiency is demonstrated on examples of nonlinear systems.  相似文献   

14.
We consider continuous-time systems with input, output and additive disturbances in the particular case where the measurements are only available at discrete instants and have disturbances. To solve a state estimation problem, we construct continuous–discrete interval observers that are asymptotically stable in the absence of disturbances. These interval observers are composed of two copies of the studied system and of a framer, accompanied with appropriate outputs which give, componentwise, upper and lower bounds for the solutions of the studied system.  相似文献   

15.
This paper addresses the problem of passive fault-tolerant control for linear parameter-varying systems subject to actuator faults. The FTC, based on a linear state feedback, is designed to compensate the impact of actuator faults on system performance by stabilising the closed-loop system using interval observers. The design of interval observers is based on the discrete-time Luenberger observer structure, where uncertainties and faults with known bounds are considered. Sufficient conditions for the existence of the proposed observer are explicitly provided. Simulation results are presented to show the effectiveness of the proposed approach.  相似文献   

16.
This paper aims at giving an overview of available results of state and parameter approaches for chemical and biochemical processes. It is largely organized as a tutorial and starts with a brief reminder concerning the design of extended Luenberger (ELO) and Kalman (EKO) observers, followed by an illustrative nonlinear observer algorithm. Evaluation of the performance of classical observers in presence of model uncertainties will serve as a basis for the motivation of designing asymptotic and interval observers, that do not require the knowledge of the process kinetics. The design of state observers with known kinetic models but uncertain kinetic parameters will then be considered via suggestions of improvements of the EKO and the introduction of two other types of observers (observers where the unknown parameters are used as design parameters; adaptive observers). Finally, the design of on-line parameter estimation schemes will be introduced. One of the objectives of the present survey is also to suggest new research directions.  相似文献   

17.
This paper proposes the use of interval observers and viability theory in fault detection and isolation (FDI). Viability theory develops mathematical and algorithmic methods for investigating the viability constraints characterisation of dynamic evolutions of complex systems under uncertainty. These methods can be used for checking the consistency between observed and predicted behaviour by using simple sets that approximate the exact set of possible behaviour (in the parameter or state space). In this paper, FDI is based on checking for an inconsistency between the measured and predicted behaviours using viability theory concepts and sets. Finally, an example is provided in order to show the usefulness of the proposed approach.  相似文献   

18.
This paper proposes a linear parameter varying (LPV) interval unknown input observer for the robust fault diagnosis of actuator faults and ice accretion in unmanned aerial vehicles (UAVs) described by an uncertain model. The proposed interval observer evaluates the set of values for the state, which are compatible with the nominal fault‐free and icing‐free operation and can be designed in such a way that some information about the nature of the unknown inputs affecting the system can be obtained, thus allowing the diagnosis to be performed. The proposed strategy has several advantages. First, the LPV paradigm allows taking into account operating point variations. Second, the noise rejection properties are enhanced by the presence of the integral term. Third, the interval estimation property guarantees the absence of false alarms. Linear matrix inequality–based conditions for the analysis/design of these observers are provided in order to guarantee the interval estimation of the state and the boundedness of the estimation. The developed theory is supported by simulation results, obtained with the uncertain model of a Zagi Flying Wing UAV, which illustrate the strong appeal of the methodology for identifying correctly unexpected changes in the system dynamics due to actuator faults or icing.  相似文献   

19.
Recent advances in the design of interval observers have made it possible to ensure the non‐divergence of the computed state bounds from the stability of LTI systems under bounded inputs, with no need for additional monotony assumptions. Time‐varying changes of coordinates can be used to that purpose. Most of the related works result in either continuous‐time or discrete‐time interval dynamics. This paper proposes a constructive algorithm to compute the exact sampled response of a linear interval predictor under bounded inputs, gives a stability equivalence result and discusses the design of interval observers. The exact sampling requires held input bounds but the uncertain input itself needs not to be held. A numerical example exhibiting an oscillatory behavior illustrates the main results.  相似文献   

20.
This paper proposes a sensorfault detection and isolation (FDI) approach based on interval observers and invariant sets. In fault detection (FD), both interval observer-based and invariant set-based mechanisms are used to provide real-time fault alarms. In fault isolation (FI), the proposed approach also uses these two different mechanisms. The former, based on interval observers, aims to isolate faults during the transient-state operation induced by faults. If the former does not succeed, the latter, based on both interval observers and invariant sets, is started to guarantee FI after the system enters into steady state. Besides, a collection of invariant set-based FDI conditions are established by using all available system-operating information provided by all interval observers. In order to reduce computational complexity, a method to remove all available but redundant/unnecessary system-operating information is incorporated into this approach. If the considered faults satisfy the proposed FDI conditions, it can be guaranteed that they are detectable and isolable after their occurrences. This paper concludes with a case study based on a subsystem of a wind turbine benchmark, which can illustrate the effectiveness of this FDI technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号