首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
吸收式制冷技术的应用与发展   总被引:5,自引:1,他引:4  
溴化锂吸收式制冷技术在我国得到了飞速发展和广泛应用。介绍了溴化锂吸收式制冷技术在我国应用情况,对单效机,双效机及直燃机的应用场合进行了分析,同时对溴化锂吸收式制冷技术将来的发展进行了展望。  相似文献   

2.
金晶  冯明志 《节能》1994,(9):30-33
针对国内溴化锂吸收式制冷机组结构笨重、体积庞大、金属耗量多等缺,指出了溴化锂吸收式制冷机采用强化传热技术的必要性。利用理论分析和实验研究结果,总结出了溴化锂机组各传热设备中应分别采取的强化传热手段。根据机组中各换热器的传热机理和传热过程,相应采取不同的传热技术,可使溴化锂吸收式制冷机组节省有色金属35%以上,体积减小50%以上。  相似文献   

3.
强化传热技术在溴化锂吸收式制冷机上的应用山东工业大学金晶,冯明志1前言近几年,以利用热能为动力的溴化锂吸收式制冷机发展较快。溴化锂制冷机具有节能效果,在大冷量要求的生产过程及工艺性、舒适性空调系统中,将日益得到推广和使用。国内已生产出单效和双效溴化锂...  相似文献   

4.
《节能》2015,(8)
在能源紧张、环境污染日益严重的今天,太阳能的开发利用符合环境保护的可持续发展要求。在太阳能的应用中,太阳能空调技术具有良好的发展前景,既满足了人们追求高品质生活的要求,又节能环保,是空调制冷的理想形式。文中介绍太阳能溴化锂吸收式制冷系统的工作原理,阐述吸收式制冷循环系统的几种典型结构及相关的研究进展,对影响溴化锂吸收式制冷机组性能的因素进行分析,最后探讨太阳能溴化锂吸收式制冷机的发展前景。  相似文献   

5.
溴化锂吸收式制冷机的应用分析   总被引:4,自引:1,他引:4  
魏兵 《节能技术》2002,20(3):30-32
概述了溴化锂吸收式制冷的原理,分析了溴化锂吸收式制冷机的综合效益及其一次能源利用率,以热电厂热电冷三联供系统为例分析了溴化锂吸收式制冷机的节能效益,并指出了溴化锂吸收式制冷机在工程应用中应注意的问题。  相似文献   

6.
溴化锂吸收式制冷是回收空压机低温余热的有效方法之一.基于Aspen Plus软件实现热水型溴化锂吸收式制冷机组仿真模型构建及模拟计算,探讨制冷机系统热力参数的确定,为空压机余热利用方案和吸收式制冷机组工艺设计提供思路.  相似文献   

7.
太阳能溴化锂吸收式制冷技术的研究进展   总被引:1,自引:0,他引:1  
介绍了太阳能澳化锂吸收式制冷循环的工作原理和系统构成,具体阐述了该制冷循环的几种典型结构,包括单效、双效、两级以及三效涣化锂吸收式制冷循环,分析了各种制冷循环的优缺点以及目前研究进展;进一步讨论了太阳能澳化锂吸收式制冷机组的性能特点受冷媒水出口温度、冷却水进口温度、加热蒸汽温度、污垢系数及不凝性气体等诸多因素的影响;提出了太阳能溴化锂吸收式制冷技术现存问题,最后指出,随着科学技术的发展和绿色建筑的兴起,太阳能溴化锂吸收式制冷将会有非常大的发展前景。  相似文献   

8.
范林  陆震 《节能技术》1998,(6):33-34
目前,电动的蒸汽压缩式制冷方式占据着主导地住.在我国,随着制冷和空调的迅速发展,不仅加剧了电力供应紧张的局面,而且面对着环境污染的严峻课题.本文综述我国溴化锂吸收式热泵技术发展概况,以及有关企业和地区推广应用溴化锂制冷技术于热电冷联产的情况,并作了能源利用和环境污染的分析,指出推广应用溴化锂制冷技术于热电冷联产是我国能源利用和制冷空调的一个发展方向.  相似文献   

9.
太阳能空调技术中,太阳能单效溴化锂吸收式制冷空调技术是应用最多的一种,但小型太阳能吸收式空调系统存在不稳定及效率低的问题。本文主要通过对太阳能集热器选项及效率分析,低温驱动太阳能吸收式空调热物理参数分析,并完成实验测试,制冷采暖效果良好。  相似文献   

10.
对溴化锂吸收式制冷技术在热电冷联供、燃气电站空气冷却等方面的应用进行了研究。  相似文献   

11.
过热器再热器爆漏事故的原因分析及对策   总被引:1,自引:0,他引:1  
过热器、再热器爆漏事故严重影响了锅炉机组的安全性和经济性,而造成过热器、再热器爆漏事故的主要因素有超温爆管、磨损、高温腐蚀、热疲劳、质量失控等。通过对这些因素的主要原因和爆口特征的分析,提出了一些过热器、再热器爆漏事故的防治措施。  相似文献   

12.
Two important challenges need to be addressed to realize a practical biorefinery for the conversion of biomass to fuels and chemicals: (i) effective methods for the degradation and fractionation of lignocelluloses and (ii) efficient and robust chemical methods for the conversion of bio-feeds to target products via highly selective catalytic reactions. Ultrasonic energy promotes the pretreatment and conversion process through its special cavitational effects. In this review, recent progress and methods for combining and integrating sonication into biomass pretreatment and conversion for fuels and chemicals are critically assessed. Ultrasonic energy combined with proper solvents allows destruction of the recalcitrant lignocellulosic structure, fractionation of biomass components, and then assists many thermochemical and biochemical reactions, with increased equilibrium yields of sugars, bio-ethanol and gas products by 10–300%. Sonication promotes hydrolysis, esterification and transesterification in biodiesel synthesis and leads to reduced reaction time by 50–80%, lower reaction temperature, less amounts of solvent and catalyst than comparable unsonicated reaction systems. For algal biomass, sonication benefits the disruption, lysis and content release of macro and microalgae cells, and reduces the time required for subsequent extraction and chemical/biochemical reactions, with efficiencies typically being improved by 120–200%. High-frequency ultrasound of 1–3 MHz allows harvesting of microalgae, liquid product separation and in-situ process monitoring of biomass reactions, while high-intensity ultrasound at 20–50 kHz activates heterogeneous and enzymatic catalysis of the biomass reactions. The use of ultrasound in conversion of biomass to biofuels provides a positive process benefit.  相似文献   

13.
大力发展生活垃圾及农林废弃物等生物质直接燃烧发电和煤炭掺烧生物质燃烧发电对缓解我国能源安全问题和实现“双碳”战略目标具有重要意义。然而生活垃圾和农林废弃物中较高含量的碱/碱土金属、硫、氯和硅等元素在高温燃烧过程中会发生复杂交互反应,导致锅炉结焦、积灰和腐蚀等一系列问题,严重影响锅炉的安全稳定运行。通过系统分析生活垃圾和农林废弃物等固体燃料燃烧过程中可能的结焦、积灰和腐蚀形成机理,探讨了原料灰分组成和结焦、积灰、腐蚀形成的关联关系和预测方法,在此基础上比较了不同类型结焦、积灰和腐蚀抑制剂的作用机制及其施加效果,并对未来高效抑制剂的开发进行了展望。  相似文献   

14.
An experimental investigation was conducted to evaluate the effects of using methanol as additive to biodiesel–diesel blends on the engine performance, emissions and combustion characteristics of a direct injection diesel engine under variable operating conditions. BD50 (50% biodiesel and 50% diesel in vol.) was prepared as the baseline fuel. Methanol was added to BD50 as an additive by volume percent of 5% and 10% (denoted as BDM5 and BDM10). The results indicate that the combustion starts later for BDM5 and BDM10 than for BD50 at low engine load, but is almost identical at high engine load. At low engine load of 1500 r/min, BDM5 and BDM10 show the similar peak cylinder pressure and peak of pressure rise rate to BD50, and higher peak of heat release rate than that of BD50. At low engine load of 1800 r/min, the peak cylinder pressure and the peak of pressure rise rate of BDM5 and BDM10 are lower than those of BD50, and the peak of heat release rate is similar to that of BD50. The crank angles at which the peak values occur are later for BDM5 and BDM10 than for BD50. At high engine load, the peak cylinder pressure, the peak of pressure rise rate and peak of heat release rate of BDM5 and BDM10 are higher than those of BD50, and the crank angle of peak values for all tested fuels are almost same. The power and torque outputs of BDM5 and BDM10 are slightly lower than those of BD50. BDM5 and BDM10 show dramatic reduction of smoke emissions. CO emissions are slightly lower, and NOx and HC emissions are almost similar to those of BD50 at speed characteristic of full engine load.  相似文献   

15.
16.
Over the years, significant changes have taken place with regard to the type as well the quantity of energy used in Indian households. Many factors have contributed in bringing these changes. These include availability of energy, security of supplies, efficiency of use, cost of device, price of energy carriers, ease of use, and external factors like technological development, introduction of subsidies, and environmental considerations. The present paper presents the pattern of energy consumption in the household sector and analyses the causalities underlying the present usage patterns. It identifies specific (groups of) actors, study their specific situations, analyse the constraints and discusses opportunities for improvement. This can be referred to “actor-oriented” analysis in which we understand how various actors of the energy system are making the system work, and what incentives and constraints each of these actors is experiencing. It analyses actor linkages and their impact on the fuel choice mechanism. The study shows that the role of actors in household fuel choice is significant and depends on the level of factors – micro, meso and macro. It is recommended that the development interventions should include actor-oriented tools in energy planning, implementation, monitoring and evaluation. The analysis is based on the data from the national sample survey (NSS), India. This approach provides a spatial viewpoint which permits a clear assessment of the energy carrier choice by the households and the influence of various actors. The scope of the paper is motivated and limited by suggesting and formulating a powerful analytical technique to analyse the problem involving the role of actors in the Indian household sector.  相似文献   

17.
Gasification or combustion of coal and biomass is the most important form of power generation today. However, the use of coal/biomass at high temperatures has an inherent problem related to the ash generated. The formation of ash leads to a problematic phenomenon called slagging. Slagging is the accumulation of molten ash on the walls of the furnace, gasifier, or boiler and is detrimental as it reduces the heat transfer rate, and the combustion/gasification rate of unburnt carbon, causes mechanical failure, high-temperature corrosion and on occasions, superheater explosions. To improve the gasifier/combustor facility, it is very important to understand the key ash properties, slag characteristics, viscosity and critical viscosity temperature. This paper reviews the content, compositions, and melting characteristics of ashes in differently ranked coal and biomass, and discusses the formation mechanism, characteristics, and structure of slag. In particular, this paper focuses on low-rank coal and biomass that have been receiving increased attention recently. Besides, it reviews the available methodologies and formulae for slag viscosity measurement/prediction and summarizes the current limitations and potential applications. Moreover, it discusses the slagging behavior of different ranks of coal and biomass by examining the applicability of the current viscosity measurement methods to these fuels, and the viscosity prediction models and factors that affect the slag viscosity. This review shows that the existing viscosity models and slagging indices can only satisfactorily predict the viscosity and slagging propensity of high-rank coals but cannot predict the slagging propensity and slag viscosity of low-rank coal, and especially biomass ashes, even if they are limited to a particular composition only. Thus, there is a critical need for the development of an index, or a model or even a measurement method, which can predict/measure the slagging propensity and slag viscosity correctly for all low-rank coal and biomass ashes.  相似文献   

18.
Energy security, economic growth and environmental protection are the national energy policy drivers of any country of the world. Scientists, governments, and industries are witnessing the long-term consequences of energy consumption and foresee catastrophic outcomes if alternative methods of energy production are not developed and utilised to meet the needs of our global economy. In recent years, PV is proposed as a competitive energy policy and a step forward to the target of sustainable development and environmental friendly energy source. In this contribution a particular attention is being given to the joint event that bring together the relevant parties, the University of Sciences and Technology of Oran (USTO), Japan International Corporation and Japan Science and Technology Agencies (JICA, JST) to develop a long-term vision and strategy to boost the ideas for the realization and the development of the Sahara Solar Breeder (SSB) project. SSB advocates the view of undertaking collaborative basic, applied and development research, as well as industrial production and technical, commercial and financial support services to implement photovoltaic solar energy systems. The strategic objective is the establishment of a Global Clean Energy Superhighway as the solution to global energy challenges, water shortages, levelling of electric power supply in the world, climate change and other environmental problems arising from the current fossil-fuel heavy global energy paradigm [1]. This project will tackle the key challenges and issues related to the field of PV putting forward the USTO perspective and promoting its R/D activities by a collaborative research plan between Japan and Algeria. This event also seeks to identify the most important challenges facing both the research and economic sectors and put forward new strategies that will identify the required skills to transform the research prospects of USTO based on the analysis and prospect of elementary processes and system design.  相似文献   

19.
20.
The plugging mechanism of multiphase mixed rich-liquid transportation in submarine pipeline is a prerequisite for maintaining the fluid flow in the pipeline and ensuring safe fluid flow. This paper introduced the common experimental devices used to study multiphase flow, and summarized the plugging progress and mechanism in the liquid-rich system. Besides, it divided the rich-liquid phase system into an oil-based system, a partially dispersed system, and a water-based system according to the different water cuts, and discussed the mechanism of hydrate plugging. Moreover, it summarized the mechanism and the use of anti-agglomerates in different systems. Furthermore, it proposed some suggestions for future research on hydrate plugging. First, in the oil-based system, the effect factors of hydrates are combined with the mechanical properties of hydrate deposit layer, and the hydrate plugging mechanism models at inclined and elbow pipes should be established. Second, the mechanism of oil-water emulsion breaking in partially dispersed system and the reason for the migration of the oil-water interface should be analyzed, and the property of the free water layer on the hydrate plugging process should be quantified. Third, a complete model of the effect of the synergy of liquid bridge force and van der Waals force in the water-based system on the hydrate particle coalescence frequency model is needed, and the coalescence frequency model should be summarized. Next, the dynamic analysis of a multiphase mixed rich-liquid transportation pipeline should be coupled with the process of hydrate coalescence, deposition, and blockage decomposition. Finally, the effects of anti-agglomerates on the morphological evolution of hydrate under different systems and pipeline plugging conditions in different media should be further explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号