首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
以国产3k JC1#纤维布为增强体,以聚碳硅烷和SiC微粉为先驱体和填料,分别采用热压辅助先驱体转化和先驱体浸渍裂解工艺制备了2D Cf/SiC复合材料.结果表明,热压辅助先驱体转化工艺制备的2D C/SiC复合材料纤维损伤严重,基体较为疏松,材料力学性能很低,弯曲强度和断裂韧性仅为84.3 MPa和6.5 MPa·m1/2.而先驱体浸渍裂解工艺制备的2D C-SiC复合材料纤维损伤较小,具有较好的界面结合,内部孔隙较为均匀,力学性能较好,弯曲强度和断裂韧性分别达到321.6 MPa和17.8 MPa·m1/2.材料具有较好的高温力学性能,1300℃时力学性能有较大幅度的提高,1600℃和1800℃时复合材料力学性能还可以较好地保持.  相似文献   

2.
先驱体浸渍-裂解法制备Cf/SiC复合材料   总被引:1,自引:0,他引:1  
采用先驱体浸渍-裂解法制备了Cf/SiC复合材料.重点研究碳纤维类型对复合材料力学性能和断裂行为的影响.研究表明,采用先驱体浸渍-裂解法可制备出致密度较高的Cf/SiC复合材料.由于M40JB纤维的制备温度明显高于T300纤维的制备温度,因此与T300纤维相比,M40JB纤维具有较高的结晶度和较低的表面活性.结果,在复合材料制备过程中,M40JB纤维与基体的界面反应较弱,从而使复合材料呈现韧性断裂,具有较好的力学性能,其抗弯强度和断裂韧性分别为614.4 MPa和18.8 MPa·m1/2.而T300纤维则与基体发生较强的界面反应,导致纤维与基体间的界面结合过强,复合材料表现为脆性断裂.  相似文献   

3.
以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备碳纤维布增强碳化硅复合材料,考察了分别采用金属模具和石墨模具制备的2D Cf/SiC材料的力学性能.结果表明采用石墨模具可以减少脱模时材料的层间损伤,制备的材料孔隙分布均匀,力学性能较好,材料的弯曲强度和剪切强度分别达到246.4MPa和24.2MPa,弯曲模量达到64.8GPa,断裂韧性达到10.7MPa·m1/2.  相似文献   

4.
以先驱体浸渍裂解(PIP)工艺制备了2DC/SiC复合材料,研究了低温裂解工艺(裂解温度低于1000℃)对2D Cf/SiC复合材料结构和性能的影响,为Cf/SiC复合材料的低温制备探索可行之路。研究表明,采用900℃裂解工艺制备的复合材料其力学性能达到或高于目前同类工艺制备的2D Cf/SiC复合材料力学性能,其弯曲强度达到329.6MPa,剪切强度32.1MPa,断裂韧性14.7MPa·m^1/2。并采用差热(TG-DTA)、红外光谱(IR)、X射线衍射(XRD)等对先驱体聚碳硅烷(PCS)及其低温裂解产物的结构和性能进行了研究。  相似文献   

5.
以聚碳硅烷(PCS)为先驱体,T300碳纤维和光威(GW)碳纤维为增强纤维,采用先驱体浸渍一裂解工艺(PIP)分别制备了Cf/SiC复合材料。在相同工艺条件下,所制备GW碳纤维复合材料的力学性能达到了T300纤维复合材料的性能水平,两种纤维增强SiC基复合材料抗弯强度分别为364MPa和437MPa。采用扫描电镜观察试样断口形貌及纤维拔出情况,并分析了复合材料的结构和性能差异。  相似文献   

6.
以聚碳硅烷(PCS)为先驱体,采用先驱体浸渍裂解工艺(PIP)制备出Diamond/SiC复合材料,重点研究制备工艺参数对复合材料致密度等性能的影响规律。结果表明:PCS裂解产生的β-SiC与基体中α-SiC和Diamond的界面相容性良好,有利于Diamond/SiC的致密化;模压压力、浸渍液浓度以及预氧化处理等制备工艺参数是影响Diamond/SiC复合材料致密度的主要原因;Diamond/SiC多孔坯经7个周期的PIP处理后可成为致密度较高的Diamond/SiC复合材料。  相似文献   

7.
2D Cf/SiC-Cu复合材料的制备和性能   总被引:1,自引:0,他引:1  
针对固体火箭发动机喉衬的使用工况,提出并采用先驱体转化法制备了一种新型的复合材料,2D Cf/SiC-Cu材料(其中Cu作为发汗剂),对其力学性能和烧蚀性能进行了考察.结果表明:采用先驱体转化法可以制备出力学性能较好的2D C1/SiC-Cu材料,弯曲强度、剪切强度和断裂韧性分别达到263 MPa,27.7 MPa和15.7MPa·m1/2.材料密度为2.24 g/cm3,在氧乙炔焰中烧蚀60 s后,材料结构保持完整,力学性能仍能满足喉衬材料的使用要求,质量损失为0.124 g.因此,2D Cf/SiC-Cu材料具有较低的密度、良好的力学性能和较好的抗烧蚀性能,是一种有希望的固体火箭发动机喉衬备选材料.  相似文献   

8.
研究了含硼(B)的聚碳硅烷(PCS)/二乙烯基苯(DVB)先驱体的裂解,并以B为活性填料,SiC微粉为惰性填料,PCS/DVB为先驱体制备了2D Cf/SiC-B材料.考察了B粉含量对材料力学性能和抗氧化性能的影响.结果表明,B的引入可以有效提高先驱体的陶瓷产率,缩短制备周期,当浆料中B含量为15φ%时,6次浸渍-交联-裂解周期后,材料的弯曲强度达到301.3MPa,与不添加活性填料制备的材料9个周期后的性能基本相当.当浆料中B含量为5φ%时,材料的力学性能和抗氧化性能均较好,9个周期后,材料的弯曲强度和断裂韧性分别达到351.3 MPa,13.7 Mpa·m1/2,较不添加活性填料制备的材料力学性能有所提高,在1300℃马弗炉中氧化10 min后,弯曲强度和断裂韧性保留率分别达到了79.4%和80.3%,较未添加活性填料的Cf/SiC材料有明显提高.  相似文献   

9.
以二维碳纤维布、硅树脂先驱体、SiC微粉和乙醇溶剂为原料,采用PIP工艺制备了2D Cf/Si-O-C材料,考察了浆料配比对材料力学性能和抗氧化性能的影响.结果表明:硅树脂/乙醇/SiC配比为3∶1.2∶1时所制备材料的力学性能较好,其弯曲强度和断裂韧性分别达到249 MPa和12.7 MPa·m1/2.与力学性能的变化趋势不同,随着浆料中SiC含量的增加,材料的抗氧化性能随之提高,硅树脂/乙醇/SiC配比为3∶1.2∶4时所制备材料在1300℃氧化10 min后,弯曲强度和断裂韧性保留率分别达到了76.3%和83.9%,较未添加SiC微粉的2D Cf/Si-O-C材料有明显提高.  相似文献   

10.
采用先驱体浸渍-裂解法,以聚碳硅烷和正丁醇锆为原料高温裂解制备了ZrO2改性的SiC陶瓷材料,采用氧乙炔焰对材料进行烧蚀实验,结合XRD、SEM和EDS能谱等测试方法,研究了ZrO2的引入对材料烧蚀行为的影响。结果表明:在制备的ZrO2改性SiC陶瓷中,ZrO2以细碎的颗粒状存在于致密的SiC之间。ZrO2的引入提高了SiC陶瓷材料的抗烧蚀性能,引入质量分数为29%ZrO2后,SiC陶瓷的质量烧蚀率由0.0412g/s降低为0.0195g/s,烧蚀后材料未发生断裂。构建了烧蚀行为模型,可知ZrO2在烧蚀后能相对稳定的存在于烧蚀中心,而SiC被氧化为SiO2向四周流失。  相似文献   

11.
PIP工艺制备Cf/SiC复合材料微观结构研究   总被引:1,自引:0,他引:1  
用N2等温吸附法研究了PIP工艺制备3D Cf/SiC复合材料内部微观结构。结果表明,复合材料内部为多孔结构,孔隙形状多样,平均孔径小于10nm,孔径分布集中,比表面积为3.41m^2/g。结合吸附理论,认为由B.E.T方程及F.H.H方程计算分形维数值分别反映了孔隙表面的粗糙形貌和孔隙分布复杂拓扑结构。与其它试验结果对比发现,受自身机理所限,等温吸附法仅能表征材料内纳米级中微孔,对100nm以上大孔难以测量,因而无法全面表征Cf/SiC复合材料孔隙特征。  相似文献   

12.
以聚碳硅烷(PCS)为陶瓷先驱体,采用PIP工艺制备3D-B Cf/SiC复合材料,研究了首周期不同工艺条件对材料性能的影响.结果表明首周期1600℃真空裂解的Cf/SiC复合材料性能最优,弯曲强度和断裂韧性分别达到497MPa和29.6 MPa·m1/2;首周期采用缓慢降温可以小幅度地提高Cf/SiC复合材料的力学性能.  相似文献   

13.
针对2D C/SiC复合材料存在碳布层间缺乏纤维增强,层间结合较差的问题,提出通过Z-向穿刺工艺提高碳布层间结合,克服材料使用时可靠性不高的问题,并比较了穿刺工艺对复合材料微观结构和力学性能的影响.结果表明,通过Z-向穿刺工艺制得试样2D C/SiC-Z_(pin)的弯曲强度、弯曲模量和剪切强度分别为247.8 MPa、37.8 GPa和32.1 MPa,而未穿刺试样2D C/SiC的弯曲强度、弯曲模量和剪切强度分别只有219.3 MPa、34.4 GPa和23.3 MPa,由此可见,采用Z-向穿刺工艺能明显提高复合材料的力学性能.微观结构分析认为,试样力学性能提高的根本原因在于采用Z-向穿刺纤维加强了碳布层间结合,使材料具有较好的整体性,克服了复合材料层间结合较弱对力学性能带来的不利影响.  相似文献   

14.
SiC微粉含量对2D-SiC_f/SiC复合材料力学性能影响   总被引:1,自引:0,他引:1  
对PIP法制备2D-SiC_f/SiC复合材料成形浆料中惰性填料SiC含量对2D-SiC_f/SiC复合材料孔隙率、纤维体积分数以及力学性能影响进行研究.研究表明,SiC微粉含量较低时,浆料粘度过低,导致层间存在较大气孔,纤维体积分数不高,致使复合材料力学性能不佳,当SiC微粉含量过高时,浆料粘度过大,层间基体厚度增加,纤维体积分数下降,并且浸渍效率降低,孔隙率增大,复合材料力学性能下降.当SiC微粉含量为33.3%时,复合材料具有较低的孔隙率和较高的纤维体积分数,复合材料具有较好的力学性能,弯曲强度和断裂韧性分别达到211.7 MPa和8.56 MPa·m~(1/2).  相似文献   

15.
采用挤压铸造法制备了SiC颗粒混杂增强T700/Al和M40/Al复合材料,研究了材料的微观组织与力学性能.结果表明,复合材料组织致密,纤维分布均匀.铸造态复合材料存在界面反应,透射电镜和XRD分析表明M40/Al的界面反应物尺寸和数量均小于T700/Al,M40Cf与铝具有较好的化学相容性.拉伸试验表明,M40/Al的抗拉强度高于T700/Al,这是由于界面反应物的数量改变了复合材料的断裂机制.  相似文献   

16.
利用强制脉冲CVI工艺在2.5D纤维编织体上沉积C—SiC双层界面,然后通过浆料浸渍裂解方法得到了Cf/SiC复合材料,并考察界面中C层、SiC层厚度变化对Cf/SiC复合材料性能的影响。界面中C层、SiC层厚度变化对浸渍过程影响不大,得到的Cf/SiC复合材料密度基本相当,约2.0g/cm^3。但随C层厚度的增加,强度减小;随着SiC层厚度的增加,强度增加,到达一定厚度后,其强度几乎不变,为290.0MPa。在C层厚度为50nm,SiC层厚度为600nm时,表现出强的非脆性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号