首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在理论和试验上对R507A与R404A两种制冷剂的循环特性进行对比分析.在冷凝温度40.5℃,吸气温度18.3℃,过冷度0℃,压缩机等熵效率0.8的条件下,理论分析表明:R507A的制冷量较R404A高6%左右,COP高2%左右;相同条件下的性能测试结果表明:R507A的制冷量较R404A高2%~4%,COP高1%~2%,排气温度高0~4℃.  相似文献   

2.
提出R404A直接接触凝结换热的制冷循环,分析R404A直接接触凝结制冷循环的热力性能,并与常规双级压缩制冷循环的性能进行对比。得出结论:在一定的冷凝温度、蒸发温度和过冷液体的过冷度下,直接接触凝结制冷循环存在最佳的饱和液体温度,并在此最佳的饱和液体温度下,获得最优的性能和最小的冷凝热负荷,随着过冷液体的过冷度增大和蒸发温度升高,直接接触凝结制冷循环的性能系数增加、冷凝热负荷减少,获得最优性能的最佳饱和液体温度值提高。过冷液体的过冷度为25℃时,直接接触凝结制冷循环的最佳性能系数较双级压缩制冷循环的最佳性能系数提高6.2%。直接接触凝结制冷循环的最小冷凝热负荷较双级压缩制冷循环的最小冷凝热负荷减小1.8%。  相似文献   

3.
半封闭活塞式制冷压缩机低温工况应用R404A的实验研究   总被引:2,自引:0,他引:2  
通过对大连三洋压缩机有限公司生产的半封闭活塞式制冷压缩机C—L150M82,分别应用R404A与R22在低温工况下的对比实验研究,来分析使用环保型制冷剂R404A替换R22的可行性。实验研究表明:第一,半封闭活塞式制冷压缩机在保持配置不变的条件下,在低温工况下,保持冷凝温度不变,使用R404A比使用R22制冷量有明显提升,随着蒸发温度的降低制冷量可提升10%~30%;第二,在冷凝温度不变条件下,使用R404A可以达到-45℃蒸发温度;第三,使用R404A后压缩机排气温度比R22有明显降低;第四,过冷过热循环对R404A系统都有明显的性能改善。  相似文献   

4.
基于REFPROP软件分析蒸发温度、冷凝温度、中间冷凝温度对R507A/R134a复叠式空气源热泵热水系统COP的影响,得出系统运行时的最佳中间冷凝温度以及低温级和高温级制冷剂的最佳质量流量比。在中间冷凝温差为5℃,蒸发温度为-30℃,冷凝温度为80℃时,最佳中间冷凝温度为27.5℃,系统的COP为2.447,低温级和高温级制冷剂的最佳质量流量比为0.645 8。  相似文献   

5.
冯光东  柳建华  张良  何宽 《制冷学报》2020,41(1):140-145
本文搭建了冷凝换热实验台,对R410A和R22管内冷凝换热系数性能进行对比研究,实验工况为质量流速200~800kg/(m^2·s)、饱和温度40℃、干度0~1、5 mm外径水平光滑铜管,分析了质量流速和干度对管内冷凝换热的影响,并将应用于传统管道的关联式与实验所得数据进行对比。结果表明:冷凝换热表面传热系数与质量流速和干度呈正相关,高干度区域时的冷凝换热表面传热系数增幅显著;M. M. Shah[4]关联式来预测实验数据的效果并不理想,与实际值相比偏差最大可达60%,但是预测低质量流速和低干度区的数据较为理想;当质量流速较小(G=200 kg/(m^2·s))时,R410A的冷凝换热表面传热系数要低于R22;随着质量流速的增大(G=400 kg/(m^2·s)),二者冷凝换热表面传热系数的差距减小;当达到中高质量流速(G=600kg/(m^2·s))时,R410A的冷凝换热表面传热系数与R22的相似;当质量流速继续增大(G=800 kg/(m^2·s))时,R410A的冷凝换热表面传热系数随着干度的增大开始高于R22的。  相似文献   

6.
本文针对所建立的新型R404A/CO2复叠式制冷设备进行了理论研究,该系统可提供零下40℃以下的低温环境。根据R404A和CO2的物性特征及复叠式循环流程,通过数值模拟寻找一定工况下CO2低温级的最佳冷凝温度及二者的最佳质量流量比,分析冷凝蒸发器的工作温度、CO2侧蒸发温度、R404侧的冷凝温度等对R404A/CO2复叠式系统COP的影响。结果表明,为了提高循环效率并保证循环的安全运行,应尽可能地升高低温段蒸发温度、降低高温段冷凝温度,缩小冷凝蒸发器的传热温差,环保工质R404A和CO2的复叠式制冷系统在低温制冷条件下有良好的发展前景。  相似文献   

7.
对比分析制冷剂R22和R404A应用于螺杆式压缩机的制冷量、功耗、EER和排气温度及其所需内容积比值的差异。结果表明,当冷凝温度为38℃,蒸发温度在-50~10℃范围内变化时,与R22相比,R404A的制冷量降低0%~17.6%,EER降低11.8%~23.1%,功耗增加7.0%~14.7%,系统压比和所需的内容积比值相差在10%以内,R404A与R22在同一螺杆式压缩机上可以相互替换使用,不需要改变螺杆式压缩机的内容积比值。机组冷冻水出口温度在-18~10.5℃范围内变化时,机组性能参数(制冷量、功率、EER)变化曲线基本与随蒸发温度变化的性能参数曲线类似。R404A在系统含水量、清洁度、密封性、使用的冷冻油等方面与R22有所不同,在生产和应用中需要加以注意。  相似文献   

8.
实验研究了近共沸制冷工质R404A与非共沸制冷工质R407C在水平强化换热管管外的凝结换热性能。采用"Wilson图解法"对实验数据进行处理。结果表明:对于R404A和R407C,强化管外的凝结换热系数随着壁面过冷度的增加而增大,呈现出与纯工质冷凝时不同的变化趋势,这主要是近共沸或非共沸工质凝结过程中,某些组分的凝结会遇到其它组分的凝结气膜热阻所造成的;随着过冷度增加,易挥发组分开始凝结,气膜变薄,冷凝传热系数增大。R407C在强化换热管管外的凝结换热系数比R404A要小70%左右,这是由于R407C的温度滑移较R404A要大,管外形成的凝结扩散气膜造成的影响更大。R407C在高热流密度工况下的换热效果提升明显,故应尽量工作在高热流密度区域。  相似文献   

9.
宁静红  诸凯  刘圣春  董强 《制冷学报》2018,39(6):32-36+60
本文分析了R290直接接触冷凝(DCC)制冷循环的性能,并与R290常规单级压缩制冷循环的热力性能进行对比,得出:在最佳主循环冷凝温度下,R290直接接触冷凝制冷循环可获得最大性能系数和最低冷凝器热负荷。主循环过冷液体的过冷度增大,最优性能系数降低、最低冷凝器热负荷增加、蒸发器的制冷剂质量流量减少,同时,获得最优性能系数和最低冷凝器热负荷的最佳主循环冷凝温度升高。当蒸发温度为-15~-6℃,R290直接接触冷凝制冷循环相比R290单级压缩制冷循环的性能系数提高了7.5%~14.9%,冷间供冷设备蒸发器的制冷剂质量流量减少了26.5%~36.7%,冷凝器热负荷减少了1.5%~3.7%。结果表明R290直接接触冷凝制冷循环具有很好的发展前景。  相似文献   

10.
《制冷》2017,(1)
为了研究R22替代制冷剂R134A、R407C、R410A、R32、R290在热泵热水器中的热力学性能,设定冬季工况蒸发温度-10℃、冷凝温度65℃,夏季工况蒸发温度20℃、冷凝温度65℃,过冷度和过热度均为5℃。计算了不同工质系统在冬季和夏季工况的理论循环性能,对比分析了各系统的变工况特性。结果表明:R410A和R32的单位容积制热量较高,这有利于减小压缩机的功耗和体积;R290和R32的单位质量制热量较高,能够有效降低工质充注量,进而增加系统安全性。随着蒸发温度升高,各工质系统制热系数均不断增加;随着冷凝温度升高,各工质系统制热系数均不断降低;过热度变化对各工质系统制热系数影响很小,而过冷度增加可以提高各工质系统制热系数。对于6种工质热泵热水器系统,蒸发温度在冬季工况对R32系统制热系数影响最大,当蒸发温度由-14℃升至-6℃,R32系统制热系数提高21.8%,夏季工况蒸发温度对R22系统制热系数影响最大,当蒸发温度由16℃升至24℃,R22系统制热系数提高22.1%。对应于冬季工况和夏季工况,冷凝温度和过冷度变化对R410A系统制热系数影响最大。  相似文献   

11.
In this work, the alternative refrigerants were evaluated as a drop-in of an R-22-based refrigeration system. The tested system comprises a variable-speed scroll compressor, an electronic expansion valve, a hot-and-cold water circuit and their respective heat exchangers. To make a fair comparison among fluids, only the lubricant type and refrigerant charge were varied to ensure good system functionality. The system performance was evaluated, varying the expansion valve opening to achieve evaporation temperatures of −5 °C, −10 °C and −15 °C. The same methodology was applied for various frequencies using an inverter drive. It was carried out in more than 200 experiments, and the response surface method was used to analyze the results. For all tested conditions, the R-438A was the most flexible alternative among the tested refrigerants as a drop-in of R-22 operating with a scroll compressor since the system operated in a wider range of values. Meanwhile, the R-1270 had the highest cooling capacity value and the lowest TEWI.  相似文献   

12.
Pseudo-pure fluid equations of state explicit in Helmholtz energy have been developed to permit rapid calculation of the thermodynamic properties of the refrigerant blends R-410A, R-404A, R-507A, and R-407C. The equations were fitted to values calculated from a mixture model developed in previous work for mixtures of R-32, R-125, R-134a, and R-143a. The equations may be used to calculate the single-phase thermodynamic properties of the blends; dew and bubble point properties are calculated with the aid of additional ancillary equations for the saturation pressures. Differences between calculations from the pseudo-pure fluid equations and the full mixture model are on average 0.01%, with all calculations less than 0.1% in density except in the critical region. For the heat capacity and speed of sound, differences are on average 0.1% with maximum differences of 0.5%. Generally, these differences are consistent with the accuracy of available experimental data for the mixtures, and comparisons are given to selected experimental values to verify accuracy estimates. The equations are valid from 200 to 450 K and can be extrapolated to higher temperatures. Computations from the new equations are up to 100 times faster for phase equilibria at a given temperature and 5 times faster for single-phase state points given input conditions of temperature and pressure.  相似文献   

13.
This work presents the experimental evaluation of R-513A (GWP = 573) and R-450A (GWP = 547) as R-134a (GWP = 1301) drop-in replacements and as R-507A (GWP = 3987) retrofits in a commercial direct expansion refrigeration system for medium temperature applications (2 °C). The evaluation covered 24-hour tests using a single-stage cycle with semi-hermetic compressor, an electronic expansion valve customized for each refrigerant and a commercial vertical cabinet with doors placed inside a climatic chamber. The tests were performed at three water dissipation temperatures (23.3, 32.8 and 43.6 °C). Experimental results indicate that R-513A and R-450A can operate with R-134a plants, with increments in energy consumption between −1.6 to +1.2% for R-513A and from +1.3 to +6.8% for R-450A, whereas in comparison with R-507A, R-513A offered reductions in energy consumption between 4.4 to 8.2% and R-450A between 0 to 3.3%. The paper analyzes the modification of the operating pressures/temperatures and the energy indicators using the four refrigerants.  相似文献   

14.
An 18-coefficient modified Benedict–Webb–Rubin equation of state has been developed for R-404A, a ternary mixture of 44% by mass of pentafluoroethane (R-125), 52% by mass of 1,1,1-trifluoroethane (R-143a), and 4% by mass of 1,1,1,2-tetrafluoroethane (R-134a). Correlations of bubble point pressures, dew point pressures, saturated liquid densities, and saturated vapor densities are also presented. This equation of state has been developed based on the reported experimental data of PVT properties, saturation properties, and isochoric heat capacities by using least-squares fitting. These correlations are valid in the temperature range from 250 K to the critical temperature. This equation of state is valid at pressures up to 19 MPa, densities to 1300 kg·m–3, and temperatures from 250 to 400 K. The thermodynamic properties except for the saturation pressures are calculated from this equation of state.  相似文献   

15.
A mixture model explicit in Helmholtz energy has been developed that is capable of predicting thermodynamic properties of refrigerant mixtures containing R-32, R-125, R-134a, and R-152a. The Helmholtz energy of the mixture is the sum of the ideal gas contribution, the compressibility (or real gas) contribution, and the contribution from mixing. The contribution from mixing is given by a single equation that is applied to all mixtures used in this work. The independent variables are the density, temperature, and composition. The model may be used to calculate thermodynamic properties of mixtures, including dew and bubble point properties and critical points, generally within the experimental uncertainties of the available measured properties. It incorporates the most accurate published equation of state for each pure fluid. The estimated uncertainties of calculated properties are ±0.25% in density, ±0.5% in the speed of sound, and ±1% in heat capacities. Calculated bubble point pressures are generally accurate to within ±1%.  相似文献   

16.
At present hydrofluorocarbons (HFCs) such as R32, R-125, R-134a, and R-143a are widely used, and it is required to obtain accurate information of thermophysical properties, especially of the thermal conductivity of HFCs. In this paper new thermal conductivity equations for R-32, R-125, R134a, and R143a are proposed, applicable over a wide range of temperature and pressure including the critical region based on existing experimental data, and the reliability of the present equations is summarized. The problem that the thermal conductivity calculated from the thermal diffusivity in the critical region differs depending on the equation of state is also discussed. Paper presented at the Sixteenth European Conference for Thermophysical Properties, September 1–4, 2002, London, United Kingdom.  相似文献   

17.
An experimental apparatus for assessing the thermal stability threshold of refrigerant working fluids is described and results for R-134a (1,1,1,2-tetrafluoroethane), R141b (1,1-dichloro-1-fluoroethane), R-13I1 (trifluoromethyl iodide), R-7146 (sulphur hexafluoride), R-125 (pentafluoroethane) are presented. The information is a concern for the design of refrigeration systems, high temperature heat pumps and Organic Rankine Cycles (ORC), for which the above refrigerants are proposed. The method aims to identify a maximum temperature for plant operation in contact with stainless steel and involves the evaluation of four indicators: (1) pressure variation while the fluid is maintained at set temperature; (2) saturation pressure comparison after heat treatment; (3) chemical analysis; and (4) vessel visual inspection after the test session. The highest temperatures at which no evident degradation occured are: 368°C for R-134a; 102°C for R-13I1; 90°C for R-141b; 204°C for R-7146; and 396°C for R-125.  相似文献   

18.
The present work aims to evaluate the performance characteristics of a vapor compression refrigeration system using R-438A as a retrofit refrigerant for R-22. In order to achieve this objective, a test facility is developed and experiments are performed over a wide range of chilled water inlet temperature (11:20 °C), condenser water inlet temperature (25:35 °C) and condenser water mass flow rate (363:543 kg h−1). Results showed that as the chilled water inlet temperature changes from 11.5 to 20.5 °C, system COP increases from 1.78 to 2.07 at constant condenser water inlet temperature of 25.5 °C. Cooling capacity and COP of the system using R-438A are lower than R-22 by 11% and 12.5%, respectively. However, compressor discharge temperature using R-438A is slightly lower than R-22 which confirms that R-438A can be used as a retrofit refrigerant for R-22 to complete the remaining life time of the existing plants.  相似文献   

19.
In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1–0.9), mass flux (200–600 kg/m2s) and heat flux (5–15 kW/m2). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reasoning is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.  相似文献   

20.
Enthalpy and entropy equations, as these resulted from the Martin-Hou Equation of State, are presented for the promising mixtures R-404A and R-410A that replace the HCFC-22 in refrigerator and heat pump systems. Based on these equations, a model was developed to simulate the relevant thermodynamic heat pump cycle for vapour compression systems. The variation of exergy efficiency factor, COP and exergy flow is outlined. Moreover focusing on the partial derivatives of pressure, on the real gas heat capacity at constant volume and on real gas heat capacity at constant pressure, useful characteristics such as sound velocity and isentropic exponents are derived and plotted in charts, for a wide area of state conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号