首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the mitogen-activated protein (MAP) kinase pathway has been associated with both cell proliferation and differentiation. Constitutively activated forms of Mek (MAP kinase/Erk kinase) and Erk (MAP kinase) have been previously shown capable of inducing differentiation or proliferation in nonhematopoietic cells. To specifically examine the role of Erk activation in megakaryocytic growth and development, we activated the MAP kinase pathway by the transfection of constitutively activated Mek or Erk cDNA into a human megakaryoblastic cell line, CMK, by electroporation. The CMK transfectant clones that expressed constitutively activated Mek or Erk showed morphologic changes of differentiation. Transfected cells also showed expression of mature megakaryocytic cell surface markers. The MAP kinase pathway was also activated by treatment of the hematopoietic cells with a cytokine that activates Erk. The treatment of CMK cells with stem cell factor (SCF ) caused MAP kinase activation and induced differentiation by the expression of mature megakaryocytic cell surface markers. The effects of the SCF treatment were inhibited by pretreatment with a specific inhibitor of the MAP kinase pathway, PD98059. In this report, we conclude that activation of the MAP kinase pathway was both necessary and sufficient to induce differentiation in this megakaryoblastic cell line.  相似文献   

2.
3.
4.
The bisindolylmaleimide, GF109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide ), a highly selective inhibitor of protein kinase C (PKC), was used to test the role of this enzyme in phorbol ester-induced megakaryocytic differentiation of HEL cells. Treatment of these cells with 10 nmol/L phorbol 12-myristate 13-acetate (PMA) for 3 days caused a complete inhibition of proliferation and a threefold increase in the surface expression of glycoprotein (GP) IIIa, a marker of megakaryocytic differentiation that forms part of the fibrinogen receptor complex, GPIIb/IIIa. A similar effect was observed with phorbol 12,13-dibutyrate, but not with the biologically inactive derivative PMA-4-O-methyl ether. The PMA-induced increase in GPIIIa expression was completely inhibited by GF109203X in a dose-dependent manner (IC50 = 0.5 mumol/L), with a maximal effect at 2.5 to 5.0 mumol/L. GF109203X also blocked the inhibitory effect of PMA on cell growth and inhibited PMA-stimulated phosphorylation of the 47-kD PKC substrate, pleckstrin. Incubation of HEL cells with 25 mumol/L hemin for 3 days caused a fourfold to fivefold increase in expression of the erythroid differentiation marker, glycophorin A. In contrast to the inhibitory effect of GF109203X on GPIIIa expression, hemin induction of glycophorin A was enhanced by this compound. Furthermore, GF109203X alone caused a dose-dependent increase in glycophorin A expression, and induced hemoglobinization. Consistent with these changes, Northern blot analysis revealed that GF109203X treatment reduced the steady-state level of GPIIb mRNA and increased those for glycophorin A and gamma-globin. These results suggest that PKC may act as a developmental switch controlling erythroid/megakaryocytic differentiation.  相似文献   

5.
Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise.  相似文献   

6.
Transgenic mice expressing the oncogenic protein-serine/threonine kinase Mos at high levels in the brain display progressive neuronal degeneration and gliosis. Gliosis developed in parallel with the onset of postnatal transgene expression and led to a dramatic increase in the number of astrocytes positive for GFAP, vimentin, and possibly tau. Interestingly, vimentin is normally expressed only in immature or neoplastic astrocytes, but appears to be induced to high levels in Mos-transgenic, mature astrocytes. Mos can activate mitogen activated protein kinase (MAPK) and MAPK has been implicated in Alzheimer-type tau phosphorylation. In the Mos-transgenic brain we found increased levels of phosphorylation at one epitope on tau containing serines 199 and 202 (numbering according to human tau), a pattern similar but not identical to that found in Alzheimer's disease. In addition, Mos-transgenic mice express a novel neurofilament-related protein that might be a proteolytic neurofilament heavy chain degradation product. These results suggest that activation of protein phosphorylation in neurons can result in changes in cytoskeletal proteins that might contribute to neuronal degeneration.  相似文献   

7.
8.
Neurotrophins such as nerve growth factor (NGF) regulate neuronal survival during development and are neuroprotective in certain models of injury to both the peripheral and the central nervous system. Although many effects of neurotrophins involve long-term changes in gene expression, several recent reports have focused on rapid effects of neurotrophins that do not involve synthesis of new gene products. Because enhanced formation of reactive oxygen species (ROS) represents one consequence of many insults that produce neuronal death, we hypothesized that neurotrophins might influence neuronal function and survival through acute alterations in the production of ROS. Using an oxidation-sensitive compound, dihydrorhodamine, we measured ROS formation in a central nervous system-derived neuronal cell line (GT1-1 trk) and in superior cervical ganglion neurons, both of which express the transmembrane NGF receptor tyrosine kinase, trkA. There was enhanced production of ROS in both cell types in the absence of NGF that was rapidly inhibited by application of NGF; complete inhibition of ROS generation in GT1-1 trk cells occurred within 10 min. NGF suppression of ROS formation was prevented by PD 098059, a specific inhibitor of MEK (mitogen/extracellular receptor kinase, which phosphorylates mitogen-activated protein kinase). The observation that NGF acutely blocks ROS formation in neurons through activation of the mitogen-activated protein kinase pathway suggests a novel mechanism for rapid neurotrophin signaling, and has implications for understanding neuroprotective and other effects of neurotrophins.  相似文献   

9.
10.
This communication describes an extracellular signal-regulated kinase kinase (MEK)-dependent signal transduction pathway that prevents the terminal differentiation of a hemopoietic cell line. Both PMA and the cell-permeable ceramide, C2-ceramide, caused differentiation of U937 cells, but with distinct cell morphology and CD11b/CD14 surface expression. While PMA activated extracellular signal-regulated kinase (ERK), a downstream kinase of Raf-MEK signaling, C2-ceramide activated c-Jun NH2-terminal kinase (JNK), an anchor kinase of stress-induced signaling. Furthermore, only C2-ceramide stimulated an induction of cell cycle arrest that was associated with stable expression of p21CIP1 and retinoblastoma nuclear phosphoprotein dephosphorylation. Expression of p21CIP1 and JNK activation were also observed in sphingosine-treated cells, whereas sphingosine did not induce detectable differentiation. Concomitant stimulation with C2-ceramide and PMA resulted in the PMA phenotype, and cell cycle arrest was absent. ERK activation was enhanced by C2-ceramide plus PMA stimulation, whereas the activation of JNK was aborted. Strikingly, the inhibition of MEK with PD98059 altered the phenotype of C2-ceramide- and PMA-stimulated U937 cells to that of cells treated with C2-ceramide alone. Thus, ERK and JNK pathways deliver distinct signals, and the ERK pathway is dominant to the JNK cascade. Furthermore, differentiation and cell cycle arrest caused by C2-ceramide rely on independent signaling pathways, and JNK is an unlikely signaling element for this differentiation. Importantly, during C2-ceramide and PMA costimulation, the JNK pathway is not simply blocked by ERK activation; rather, cross-talk between these MAP kinase pathways acts to simultaneously augment ERK activity and down-regulate JNK activity.  相似文献   

11.
Cell interaction with adhesive proteins or growth factors in the extracellular matrix initiates Ras/mitogen-activated protein (MAP) kinase signaling. Evidence is provided that MAP kinase (ERK1 and ERK2) influences the cells' motility machinery by phosphorylating and, thereby, enhancing myosin light chain kinase (MLCK) activity leading to phosphorylation of myosin light chains (MLC). Inhibition of MAP kinase activity causes decreased MLCK function, MLC phosphorylation, and cell migration on extracellular matrix proteins. In contrast, expression of mutationally active MAP kinase kinase causes activation of MAP kinase leading to phosphorylation of MLCK and MLC and enhanced cell migration. In vitro results support these findings since ERK-phosphorylated MLCK has an increased capacity to phosphorylate MLC and shows increased sensitivity to calmodulin. Thus, we define a signaling pathway directly downstream of MAP kinase, influencing cell migration on the extracellular matrix.  相似文献   

12.
Heterotrimeric G protein-coupled receptors can activate the mitogen-activated protein kinase (MAPK) cascade. Recent studies using pharmacological inhibitors or dominant-negative mutants of signaling molecules have advanced our understanding of the pathways from G protein-coupled receptors to MAPK. However, molecular genetic analysis of these pathways is inadequate in mammalian cells. Here, using the well characterized Gsalpha- and protein kinase A-deficient S49 mouse lymphoma cells, we provide the molecular genetic evidence that Gsalpha is responsible for transducing the beta-adrenergic receptor signal to MAPK in a protein kinase A-dependent pathway involving Rap1 and Raf (but not Ras) molecules.  相似文献   

13.
14.
15.
16.
17.
Nerve growth factor (NGF) induces sustained activation of classical MAP kinase (MAPK, also known as ERK) and neuronal differentiation in PC12 cells, whereas epidermal growth factor (EGF) induces transient activation of ERK/MAPK and stimulates proliferation of the cells. Although previous studies showed that sustained activation of ERK/MAPK is important for neuronal differentiation of the cells, a recent report revealed that inhibition of the sustained phase of ERK/MAPK activation alone does not block neurite outgrowth caused by NGF. These results suggest requirement for an additional signaling pathway(s) triggered by NGF in neuronal differentiation. Here we show that NGF induces sustained activation of p38, a subfamily member of the MAPK superfamily, and that inhibition of the p38 pathway blocks neurite outgrowth in PC12 cells. Surprisingly, expression of constitutively active MAPK/ERK kinase (MAPKK, also known as MEK) results in p38 activation as well as ERK/MAPK activation, and a p38 inhibitor blocks neurite outgrowth caused by the constitutively active MAPKK/MEK. Moreover, constitutive activation of p38 is able to induce neurite outgrowth when combined with EGF treatment. These results reveal an essential role of p38 in neuronal differentiation in PC12 cells.  相似文献   

18.
19.
20.
Vascular endothelial cells are constantly in contact with oxyradicals and must be especially well equipped to resist their toxic effects and generate appropriate physiological responses. Despite the importance of oxyradicals in the physiopathology of the vascular endothelium, the mechanisms regulating the oxidative response of endothelial cells are poorly understood. In the present study, we observed that H2O2 in concentrations that induced severe fragmentation of F-actin in fibroblasts rather induced a reorganization of F-actin in primary cultures of human umbilical vein endothelial cells (HUVECs) that was characterized by the accumulation of stress fibers, the recruitment of vinculin to focal adhesions, and the loss of membrane ruffles, H2O2 also induced in these cells a strong (10- to 14-fold) activation of the p38 mitogen-activated protein (MAP) kinase, which resulted in activation of MAP kinase-activated protein kinase-2/3 and phosphorylation of the F-actin polymerization modulator, heat shock protein 27 (HSP27). The MAP kinases extracellular-regulated kinase, and c-Jun N-terminal kinase/stress-activated protein kinase were only slightly increased by these treatments. Inhibiting p38 activity with the highly specific inhibitor SB203580 blocked the H2O2-induced endothelial microfilament responses. Moreover, fibroblasts acquired an endothelium-like SB203580-sensitive actin response when HSP27 concentration was increased by gene transfection to the same high level as found in HUVECs. The results indicate that activation of p38 MAP kinase in cells such as endothelial cells, which naturally express high level of HSP27, plays a central role in modulating microfilament responses to oxidative stress. Consequently, the p38 MAP kinase pathway may participate in the several oxyradical-activated functions of the endothelium that are associated with reorganization of microfilament network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号