首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于LPC美尔倒谱特征的带噪语音端点检测   总被引:2,自引:0,他引:2  
复杂的噪声环境是语音识别系统在实际应用中性能下降的原因之一,识别预处理中的带噪端点检测作为关键技术,其性能的优劣某种程度上决定了识别率的高低。笔者提出了基于LPC美尔倒谱特征的带噪端点检测方法,对语音信号分高低频段分别提取IPC美尔倒谱特征分析,根据Mel倒谱距离判决,采用自适应噪声估计,实验结果表明,该方法计算效率较高,低信噪比下有较好的检测性能。  相似文献   

2.
基于倒谱特征的带噪语音端点检测   总被引:44,自引:0,他引:44       下载免费PDF全文
胡光锐  韦晓东 《电子学报》2000,28(10):95-97
在语音识别系统中产生错误识别的原因之一是端点检测有误差.在高信噪比情况下,正确地确定语音的端点并不困难.然而,大多数实际的语音识别系统需工作在低信噪比情况下,一些常规的端点检测方法,例如基于能量的端点检测方法在噪声环境下不能有效地工作.本文利用倒谱特征来检测语音端点,提出了带噪语音端点检测的两个算法,第一个算法利用倒谱距离代替短时能量作为判决的门限,第二个算法改进了基于隐马尔柯夫模型(HMM)的语音检测以适应噪声的变化,实验结果表明本方法可得到高正确率的带噪语音端点检测.  相似文献   

3.
《信息技术》2017,(2):137-140
语音识别中端点检测是很重要的环节,检测的好坏直接影响到后面的语音识别的效果。传统使用的短时能量与短时过零率方法在信噪比较低时,不能有效地检测语音端点,检测准确率较低。利用Teager能量算子的非线性特性,能在抑制背景噪声的同时对平稳和不平稳信号有不同程度的衰减。因此,文中提出一种基于Teager能量算子的端点检测方法,并进行改进检测算法。经过实验证明,改进的算法与短时能量检测的结果相比,该算法在信噪比较低的情况下,能够比较准确地检测出语音的起始端点,同时语音端点检测准确率比较高,验证了该算法的有效性。  相似文献   

4.
一种改进的基于倒谱特征的带噪语音端点检测方法   总被引:3,自引:0,他引:3  
沈红丽  曾毓敏  王鹏 《通信技术》2009,42(2):156-158
环境噪声是语音识别和说话人识别性能下降的原因之一,端点检测作为其关键技术之一,性能优劣在某种程度上决定了识别率的高低。文章提出一种改进的基于倒谱特征的带噪语音端点检测方法。在传统基于倒谱距离的算法基础上,该算法进一步综合利用短时过零率和短时能量作为最终判决的门限。实验结果表明,该方法计算效率较高,低信噪比下有较好的检测性能。  相似文献   

5.
噪声环境是语音识别性能下降的原因之一,端点检测作为其关键技术,其性能优劣在某种程度上决定了识别率的高低。提出一种改进的基于倒谱特征的带噪端点检测方法。在传统基于倒谱距离的算法上综合利用短时过零率和短时能量多特征作为最终判决的门限。实验结果表明,该方法计算效率较高,低信噪比下有较好的检测性能。  相似文献   

6.
基于倒谱特征的语音端点检测算法研究   总被引:1,自引:0,他引:1  
王博  郭英  段艳丽  陈琪 《信号处理》2005,21(Z1):212-215
本文在讨论基于倒谱距离语音端点检测算法不足的基础上,提出了两种改进方案.通过对三种典型噪声环境下信噪比(SNR)从-5dB到20dB的带噪语音信号进行的仿真实验结果表明,所提两种改进方案能更为准确地检测到语音的端点.  相似文献   

7.
在一个语音信号处理系统中,端点检测是对语音预处理阶段最重要的环节,好的检测效果可提高后续语音处理的效率。文章结合语音信号特性,采用根据人耳听觉机理Mel频率倒谱系数(Mel Frequency Coefficient,MFCC)对带噪语音进行端点检测,通过仿真实验的方式证明其可行性。  相似文献   

8.
一种带噪语音信号端点检测方法研究   总被引:1,自引:1,他引:1  
端点检测是语音识别中的一个重要环节.当信噪比较低时,传统的端点检测方法不能有效的工作,影响了系统的识别率.为此,本文提出了一种更有效的端点检测算法--基于LPC美尔倒谱特征的端点检测方法,它是基于LPC距离方法的一种改进.实验证明,该算法在低信噪比的情况下,能够准确的检测出语音信号.通过对三种不同的端点检测算法的比较,证明了基于LPC美尔倒谱特征算法的检测正确率较高.  相似文献   

9.
基于子带能量累积变化的语音端点检测   总被引:1,自引:0,他引:1  
噪声环境下的语音端点检测在稳健语音识别中占有十分重要的地位。根据噪音和语音子带能量的累积分布变化,提出一种新的语音信号端点检测算法。通过计算各帧的子带能量变化程度,并以此设定门限进行语音端点的检测。实验表明,与一些传统的端点检测算法比较,该算法在速度和抗噪声能力上都有所增强,适合低信噪比下的语音端点检测。  相似文献   

10.
一种基于倒谱特征的语音端点检测改进算法   总被引:3,自引:0,他引:3  
提出了一种应用语音倒谱特征参量的端点检测改进算法,对信噪比(SNR)从-10~20dB的带噪语音信号进行仿真实验,结果表明,所提方法能较为准确地检测到语音端点。  相似文献   

11.
为提高低信噪比环境下语音端点检测算法性能不高的问题,提出将MFCC倒谱距离与对数能量结合进行端点检测.首先,对语音计算对数能量,然后计算改进的倒谱距离,将MFCC倒谱距离与对数能量融合,获得了一种新的语音参数,该参数能有效地提高低信噪比情况下语音与噪声的区别,对参数进行顺利滤波用于语音端点检测,采用自动更新的双阈值进行语音端判别.仿真实验表明,该算法具有较好的适用不同噪声,在低信噪比下依然能获得比较理想的端点检测效果.  相似文献   

12.
基于压缩感知观测序列倒谱距离的语音端点检测算法   总被引:2,自引:0,他引:2  
叶蕾  孙林慧  杨震 《信号处理》2011,27(1):67-72
本文基于语音信号在离散余弦基上的近似稀疏性,采用稀疏随机观测矩阵和线性规划重构算法对语音信号进行压缩感知与重构。研究了语音信号的压缩感知观测序列特性,根据语音帧和非语音帧压缩感知观测序列频谱幅度分布分散且差异较大的特性,提出基于压缩感知观测序列倒谱距离的语音端点检测算法,并对4dB-20dB下的带噪语音进行端点检测仿真实验。仿真结果显示,基于压缩感知观测序列倒谱距离的语音端点检测算法与奈奎斯特采样下语音的倒谱距离端点检测算法一样具有良好的抗噪性能,但由于采用压缩采样,减少了端点检测算法的运算数据量。   相似文献   

13.
Teager能量算子是近年来提出的非线性方法,具有跟踪时变信号的特点,该文结合该算子和经验模态分解方法,提出一种新的语音端点检测算法,用于寻找合理的语音起始和终止端点。该算法利用经验模态分解,提出本征模态函数的有效性筛选条件,通过筛选本征模态函数,使得该算法能够处理含噪语音信号,同时分解所得单模态特性正好满足TEO算子对单成份能量跟踪的要求,最后利用Hilbert变换解决了可能存在的模态混叠问题。经过这些处理,算法能够处理语音信号中清音段的端点标识,比直接TEO、双门限法效果好。通过大量实验验证了该算法的有效性。  相似文献   

14.
舒倩  李银国 《通信技术》2007,40(11):374-375,378
MFCC是语音识别中常用的特征参数,根据MFCC分量对语音端点的敏感性,提出利用平常舍去的识别特征参数分量MFCC0作为语音端点检测的参量.接着根据MFCC0的特性设计了一种新的端点检测方法,该方法简单且无需增加额外的计算量.实验结果表明,基于该方法的语音识别系统不仅可以通过端点检测大大压缩数据量,而且提高了系统的识别率.  相似文献   

15.
语音端点检测在语音识别系统中占有重要地位。针对在噪声多变的环境中实时截取完整语音信号存在困难,文章提出一种实时语音端点检测方法。该方法首先提取每帧信号的短时平均过零率与Mel频率倒谱系数;然后利用前N帧背景噪声的Mel频率倒谱系数对当前帧进行归一化,并以该特征矢量的L2范数作为另一特征;最后根据多特征分析对有效语音信号进行截取。实验结果表明,该方法在多变的噪声环境中,截取完整语音信号具有较高准确率。  相似文献   

16.
端点检测是语音识别理论研究中的关键技术之一,为了提高语音端点检测方法的抗噪性和准确性,引入倒谱均值减(Cepstral Mean Subtraction,CMS)设计一种新的语音端点检测方法.在传统倒谱均值减算法的基础上,采用隐马尔可夫模型(Hidden Markov Model,HMM)提取最佳特征子集,利用二次分类...  相似文献   

17.
范瑜 《电讯技术》1989,29(2):21-23
在孤立字识别中,精确地判别语言信号的起始点和终止点是相当重要的。确定出语音信号范围的方案可以用来减少大量非实时系统的计算和提高识别精确度。本文在利用语音的某些特征参数——短时平均幅度或能量和短时平均过零率的基础上,提出了利用上述特征参数进行语音端点检测的IBM/PC机实现程序。  相似文献   

18.
彭佩瑶  杜月山  韦峻峰 《电声技术》2022,(11):139-141+156
无声语音识别常以表面肌电信号作为研究对象。表面肌电信号的端点检测是影响识别结果的一个重要因素。表面肌电信号与语音信号有类似之处。借助语音端点检测的方法对表面肌电信号进行分割是一种可行的思路。基于此,采用子带谱熵和梅尔倒谱距离作为信号端点检测的判决依据,通过粒子群算法优化支持向量机分类器给出端点检测结果。结果表明,在不同信噪比条件下,该算法有最高的检出率与最低的错误率。对于基于K最近邻(K-Nearest Neighbor,KNN)的无声语音识别任务,识别率达95.3%。  相似文献   

19.
基于多带谱相减的语音端点检测算法   总被引:1,自引:1,他引:1  
李圆  赵振东  杨超 《通信技术》2007,40(11):353-355
为了提高噪声环境下语音端点检测的鲁棒性,介绍了一种基于多带谱相减的语音端点检测算法.仿真结果表明,与传统的基于短时能量,过零率语音端点检测算法相比,在低信噪比环境下,该算法仍可以有效的检测出起止端点.  相似文献   

20.
蒋学仕 《电讯技术》2021,61(8):1026-1033
针对传统能量熵的短时能量与子带谱熵容易受噪声环境影响,低信噪比下端点检测性能下降的问题,提出一种基于噪声估计的改进能量熵语音端点检测算法.首先对语音进行噪声估计并以此计算语音存在概率;然后利用估计的噪声能量修正短时能量,用语音存在概率作为加权系数优化子带谱熵,并将两者结合生成改进的能量熵;最后给出基于噪声估计的动态门限...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号