首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the 3-colorability problem can be solved in O(n1.296) time on any n-vertex graph with minimum degree at least 15. This algorithm is obtained by constructing a dominating set of the graph greedily, enumerating all possible 3-colorings of the dominating set, and then solving the resulting 2-list coloring instances in polynomial time. We also show that a 3-coloring can be obtained in 2o(n) time for graphs having minimum degree at least ω(n) where ω(n) is any function which goes to ∞. We also show that if the lower bound on minimum degree is replaced by a constant (however large it may be), then neither a 2o(n) time nor a 2o(m) time algorithm is possible (m denotes the number of edges) for 3-colorability unless Exponential Time Hypothesis (ETH) fails. We also describe an algorithm which obtains a 4-coloring of a 3-colorable graph in O(n1.2535) time.  相似文献   

2.
In this paper, we consider the problem of generating all maximal cliques in a sparse graph in polynomial delay. Given a graph G=(V,E) with n vertices and m edges, the latest and fastest polynomial delay algorithm for sparse graphs enumerates all maximal cliques in O(Δ 4) time delay, where Δ is the maximum degree of vertices. However, it requires an O(n?m) preprocessing time. We improve it in two aspects. First, our algorithm does not need preprocessing. Therefore, our algorithm is a truly polynomial delay algorithm. Second, our algorithm enumerates all maximal cliques in O(Δ?H 3) time delay, where H is the so called H-value of a graph or equivalently it is the smallest integer satisfying |{vVδ(v)≥H}|≤H given δ(v) as the degree of a vertex. In real-world network data, H usually is a small value and much smaller than Δ.  相似文献   

3.
We give a clear exposition of the algorithm of Micali and Vazirani for computing a maximum matching in a general graph. This is the most efficient algorithm known for general matching. On a graph withn vertices andm edges this algorithm runs inO(n 1/2 m) time.  相似文献   

4.
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take Θ(n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].  相似文献   

5.
We study the problem of finding the next-to-shortest paths in a weighted undirected graph. A next-to-shortest (u,v)-path is a shortest (u,v)-path amongst (u,v)-paths with length strictly greater than the length of the shortest (u,v)-path. The first polynomial algorithm for this problem was presented in [I. Krasikov, S.D. Noble, Finding next-to-shortest paths in a graph, Inform. Process. Lett. 92 (2004) 117-119]. We improve the upper bound from O(n3m) to O(n3).  相似文献   

6.
The maximum weight matching problem is a fundamental problem in graph theory with a variety of important applications. Recently Manne and Mjelde presented the first self-stabilizing algorithm computing a 2-approximation of the optimal solution. They established that their algorithm stabilizes after O(2n) (resp. O(3n)) moves under a central (resp. distributed) scheduler. This paper contributes a new analysis, improving these bounds considerably. In particular it is shown that the algorithm stabilizes after O(nm) moves under the central scheduler and that a modified version of the algorithm also stabilizes after O(nm) moves under the distributed scheduler. The paper presents a new proof technique based on graph reduction for analyzing the complexity of self-stabilizing algorithms.  相似文献   

7.
A polynomial algorithm for the multiple bounded knapsack problem with divisible item sizes is presented. The complexity of the algorithm is O(n2+nm), where n and m are the number of different item sizes and knapsacks, respectively. It is also shown that the algorithm complexity reduces to O(nlogn+nm) when a single copy exists of each item.  相似文献   

8.
We present an algorithm for maintaining the biconnected components of a graph during a sequence of edge insertions and deletions. It requires linear storage and preprocessing time. The amortized running time for insertions and for deletions isO(m 2/3 ), wherem is the number of edges in the graph. Any query of the form ‘Are the verticesu andv biconnected?’ can be answered in timeO(1). This is the first sublinear algorithm for this problem. We can also output all articulation points separating any two vertices efficiently. If the input is a plane graph, the amortized running time for insertions and deletions drops toO(√n logn) and the query time isO(log2 n), wheren is the number of vertices in the graph. The best previously known solution takes timeO(n 2/3 ) per update or query.  相似文献   

9.
In this paper we initiate the study of a “dynamic” variant of the classical Vertex Cover problem, the Eternal Vertex Cover problem introduced by Klostermeyer and Mynhardt, from the perspective of parameterized algorithms. This problem consists in placing a minimum number of guards on the vertices of a graph such that these guards can protect the graph from any sequence of attacks on its edges. In response to an attack, each guard is allowed either to stay in his vertex, or to move to a neighboring vertex. However, at least one guard has to fix the attacked edge by moving along it. The other guards may move to reconfigure and prepare for the next attack. Thus at every step the vertices occupied by guards form a vertex cover. We show that the problem admits a kernel of size k4(k+1)+2k, which shows that the problem is fixed parameter tractable when parameterized by the number of available guards k. Finally, we also provide an algorithm with running time O(2O(k2)+nm) for Eternal Vertex Cover, where n is the number of vertices and m the number of edges of the input graph. In passing we also observe that Eternal Vertex Cover is NP-hard, yet it has a polynomial time 2-approximation algorithm.  相似文献   

10.
In the exact matching problem we are given a graph G, some of whose edges are colored red, and a positive integer k. The goal is to determine if G has a perfect matching, exactly k edges of which are red. More generally if the matching number of G is m=m(G), the goal is to find a matching with m edges, exactly k edges of which are red, or determine that no such matching exists. This problem is one of the few remaining problems that have efficient randomized algorithms (in fact, this problem is in RNC), but for which no polynomial time deterministic algorithm is known. Our first result shows that, in a sense, this problem is as close to being in P as one can get. We give a polynomial time deterministic algorithm that either correctly decides that no maximum matching has exactly k red edges, or exhibits a matching with m(G)?1 edges having exactly k red edges. Hence, the additive error is one. We also present an efficient algorithm for the exact matching problem in families of graphs for which this problem is known to be tractable. We show how to count the number of exact perfect matchings in K 3,3-minor free graphs (these include all planar graphs as well as many others) in O(n 3.19) worst case time. Our algorithm can also count the number of perfect matchings in K 3,3-minor free graphs in O(n 2.19) time.  相似文献   

11.
We study scheduling problems with two competing agents, sharing the same machines. All the jobs of both agents have identical processing times and a common due date. Each agent needs to process a set of jobs, and has his own objective function. The objective of the first agent is total weighted earliness–tardiness, whereas the objective of the second agent is maximum weighted deviation from the common due date. Our goal is to minimize the objective of the first agent, subject to an upper bound on the objective value of the second agent. We consider a single machine, and parallel (both identical and uniform) machine settings. An optimal solution in all cases is shown to be obtained in polynomial time by solving a number of linear assignment problems. We show that the running times of the single and the parallel identical machine algorithms are O(nm+3), where n is the number of jobs and m is the number of machines. The algorithm for solving the problem on parallel uniform machine requires O(nm+3m3) time, and under very reasonable assumptions on the machine speeds, is reduced to O(nm+3). Since the number of machines is given, these running times are polynomial in the number of jobs.  相似文献   

12.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

13.
We present a 2-approximation algorithm for the problem of finding the maximum weight K-colorable subgraph in a given chordal graph with node weights. The running time of the algorithm is O(K(n+m)), where n and m are the number of vertices and edges in the given graph.  相似文献   

14.
We consider the twin problems of maintaining the bridge-connected components and the biconnected components of a dynamic undirected graph. The allowed changes to the graph are vertex and edge insertions. We give an algorithm for each problem. With simple data structures, each algorithm runs inO(n logn +m) time, wheren is the number of vertices andm is the number of operations. We develop a modified version of the dynamic trees of Sleator and Tarjan that is suitable for efficient recursive algorithms, and use it to reduce the running time of the algorithms for both problems toO(mα(m,n)), where α is a functional inverse of Ackermann's function. This time bound is optimal. All of the algorithms useO(n) space.  相似文献   

15.
We present an O(n 2logn)-time algorithm that finds a maximum matching in a regular graph with n vertices. More generally, the algorithm runs in O(rn 2logn) time if the difference between the maximum degree and the minimum degree is less than r. This running time is faster than applying the fastest known general matching algorithm that runs in $O(\sqrt{n}m)$ -time for graphs with m edges, whenever m=ω(rn 1.5logn).  相似文献   

16.
Diagnosis of reliability is an important topic for interconnection networks. Under the classical PMC model, Dahura and Masson [5] proposed a polynomial time algorithm with time complexity O(N2.5) to identify all faulty nodes in an N-node network. This paper addresses the fault diagnosis of so called bijective connection (BC) graphs including hypercubes, twisted cubes, locally twisted cubes, crossed cubes, and Möbius cubes. Utilizing a helpful structure proposed by Hsu and Tan [20] that was called the extending star by Lin et al. [24], and noting the existence of a structured Hamiltonian path within any BC graph, we present a fast diagnostic algorithm to identify all faulty nodes in O(N) time, where N = 2n, n ? 4, stands for the total number of nodes in the n-dimensional BC graph. As a result, this algorithm is significantly superior to Dahura–Masson’s algorithm when applied to BC graphs.  相似文献   

17.
We present an algorithm to find a Hamiltonian cycle in a proper interval graph in O(m+n) time, where m is the number of edges and n is the number of vertices in the graph. The algorithm is simpler and shorter than previous algorithms for the problem.  相似文献   

18.
A certifying algorithm for a problem is an algorithm that provides a certificate with each answer that it produces. The certificate is an evidence that can be used to authenticate the correctness of the answer. A Hamiltonian cycle in a graph is a simple cycle in which each vertex of the graph appears exactly once. The Hamiltonian cycle problem is to determine whether or not a graph contains a Hamiltonian cycle. The best result for the Hamiltonian cycle problem on circular-arc graphs is an O(n2logn)-time algorithm, where n is the number of vertices of the input graph. In fact, the O(n2logn)-time algorithm can be modified as a certifying algorithm although it was published before the term certifying algorithms appeared in the literature. However, whether there exists an algorithm whose time complexity is better than O(n2logn) for solving the Hamiltonian cycle problem on circular-arc graphs has been opened for two decades. In this paper, we present an O(Δn)-time certifying algorithm to solve this problem, where Δ represents the maximum degree of the input graph. The certificates provided by our algorithm can be authenticated in O(n) time.  相似文献   

19.
We present efficient algorithms for solving several fundamental graph-theoretic problems on a Linear Array with a Reconfigurable Pipelined Bus System (LARPBS), one of the recently proposed models of computation based on optical buses. Our algorithms include finding connected components, minimum spanning forest, biconnected components, bridges and articulation points for an undirected graph. We compute the connected components and minimum spanning forest of a graph in O(log n) time using O(m+n) processors where m and n are the number of edges and vertices in the graph and m=O(n 2) for a dense graph. Both the processor and time complexities of these two algorithms match the complexities of algorithms on the Arbitrary and Priority CRCW PRAM models which are two of the strongest PRAM models. The algorithms for these two problems published by Li et al. [7] have been considered to be the most efficient on the LARPBS model till now. Their algorithm [7] for these two problems require O(log n) time and O(n 3/log n) processors. Hence, our algorithms have the same time complexity but require less processors. Our algorithms for computing biconnected components, bridges and articulation points of a graph run in O(log n) time on an LARPBS with O(n 2) processors. No previous algorithm was known for these latter problems on the LARPBS.  相似文献   

20.
We show an O(1.344n)=O(20.427n) algorithm for edge-coloring an n-vertex graph using three colors. Our algorithm uses polynomial space. This improves over the previous O(2n/2) algorithm of Beigel and Eppstein [R. Beigel, D. Eppstein, 3-coloring in time O(1.3289n), J. Algorithms 54 (2) (2005) 168–204.]. We apply a very natural approach of generating inclusion–maximal matchings of the graph. The time complexity of our algorithm is estimated using the “measure and conquer” technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号