首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and Multidisciplinary Optimization - We review some features of topology optimization with a lower bound on the critical load factor, as computed by linearized buckling analysis. The...  相似文献   

2.
The aim of this note is to discuss problems associated with local buckling constraints in the context of topology optimization. It is shown that serious difficulties are encountered unless additional measures are introduced.  相似文献   

3.
A serlous difficulty in topology optimization with only stress andlocal buckling constraints was pointed out recently by Zhou (1996a). Possibilities for avoiding this pitfall are (i) inclusion of system stability constraints and (ii) application of imperfections in the ground structure. However, it is shown in this study that the above modified procedures may also lead to erroneous solutions which cannot be avoided without changing the ground structure.  相似文献   

4.
This paper deals with topology optimization of static geometrically nonlinear structures experiencing snap-through behaviour. Different compliance and buckling criterion functions are studied and applied for topology optimization of a point loaded curved beam problem with the aim of maximizing the snap-through buckling load. The response of the optimized structures obtained using the considered objective functions are evaluated and compared. Due to the intrinsic nonlinear nature of the problem, the load level at which the objective function is evaluated has a tremendous effect on the resulting optimized design. A well-known issue in buckling topology optimization is artificial buckling modes in low density regions. The typical remedy applied for linear buckling does not have a natural extension to nonlinear problems, and we propose an alternative approach. Some possible negative implications of using symmetry to reduce the model size are highlighted and it is demonstrated how an initial symmetric buckling response may change to an asymmetric buckling response during the optimization process. This problem may partly be avoided by not exploiting symmetry, however special requirements are needed of the analysis method and optimization formulation. We apply a nonlinear path tracing algorithm capable of detecting different types of stability points and an optimization formulation that handles possible mode switching. This is an extension into the topology optimization realm of a method developed, and used for, fiber angle optimization in laminated composite structures. We finally discuss and pinpoint some of the issues related to buckling topology optimization that remains unsolved and demands further research.  相似文献   

5.
Structural and Multidisciplinary Optimization - Shell structures are some of the most widely used in engineering applications. Flat plates, stiffened panels, and wing ribs are each examples of...  相似文献   

6.
Neural Computing and Applications - Graph signal processing has recently emerged as a field with applications across a broad spectrum of fields including brain connectivity networks, logistics and...  相似文献   

7.
8.
9.
The use of the finite element method (FEM) for buckling topology optimization of a beam cross section requires large numerical cost due to the discretization in the length direction of the beam. This investigation employs the finite prism method (FPM) as a tool for linear buckling analysis, reducing degrees of freedom of three-dimensional nodes of FEM to those of two-dimensional nodes with the help of harmonic basis functions in the length direction. The optimization problem is defined as the maximization problem of the lowest eigenvalue, for which a bound variable is introduced and set as the design objective to treat mode switching phenomena of multiple eigenvalues. The use of the bound formulation also helps the proposed optimization to treat beams having local plate buckling modes as the fundamental modes as well as beams having global buckling modes. The axial stress is calculated according to the distribution of material modulus which is interpolated using the SIMP approach. Optimization problems finding cross-section layouts from rectangular, L-shaped and generally-shaped design domains are solved for various beam lengths to ascertain the effectiveness of the proposed method.  相似文献   

10.
This paper illustrates the application of a two-level approximation method for truss topology optimization with local member buckling constraints and restrictions on member intersections and overlaps. Previously developed for truss topology optimization with stress and displacement constraints, that method is achieved by starting from an initial ground structure, and, combined with genetic algorithm (GA), it can handle both discrete and continuous variables, which denote the existence and cross-sectional areas of bar members respectively in the ground structure. In this work, this method is improved and extended to consider member buckling constraints and restrict intersection and overlap of members for truss topology optimization. The temporary deletion technique is adopted to temporarily remove buckling constraints when related bar members are deleted, and in order to avoid unstable designs, the validity check for truss topology configuration is conducted. By using GA to search in each possible design subset, the singularity encountered in buckling-constrained problems is remedied, and meanwhile, as the required structural analysis is replaced with explicit approximation functions in the process of executing GA, the computational cost is significantly saved. Moreover, for the consideration of restrictions on member intersecting and overlapping, the definition of such phenomena and mathematical expressions to recognize them are presented, and a new fitness function is developed to include such considerations. Numerical examples are presented to show the efficacy of the proposed techniques.  相似文献   

11.
The present paper investigates problems of truss topology optimization under local buckling constraints. A new approach for the solution of singular problems caused by stress and local buckling constraints is proposed. At first, a second order smooth-extended technique is used to make the disjoint feasible domains connect, then the so-called ε-relaxed method is applied to eliminate the singular optima from problem formulation. By means of this approach, the singular optimum of the original problem caused by stress and local buckling constraints can be searched approximately by employing the algorithms developed for sizing optimization problems with high accuracy. Therefore, the numerical problem resulting from stress and local buckling constraints can be solved in an elegant way. The applications of the proposed approach and its effectiveness are illustrated with several numerical examples. Received May 2, 2000  相似文献   

12.
13.
A heuristic algorithm for optimal design of trusses is presented with account for stress and buckling constraints. The design variables are constituted by cross-sectional areas, configuration of nodes and the number of nodes and bars. Similarly to biological growth models, it is postulated that the structure evolves with the characteristic size parameter and the bifurcation of topology occurs with the generation of new nodes and bars in order to minimize the cost function. The first-order sensitivity derivatives provide the necessary information on topology variation and the optimality conditions for configuration and cross-sectional parameters.  相似文献   

14.
Generalized topology design of structures with a buckling load criterion   总被引:2,自引:0,他引:2  
Material based models for topology optimization of linear elastic solids with a low volume constraint generate very slender structures composed mainly of bars and beam elements. For this type of structure the value of the buckling critical load becomes one of the most important design criteria and so its control is very important for meaningful practical designs. This paper tries to address this problem, presenting an approach to introduce the possibility of critical load control into the topology optimization model.Using the material based formulation for topology design of structures, the problem of optimal structural reinforcement for a critical load criterion is formulated. The stability problem is conveniently reduced to a linearized eigenvalue problem assuming only material effective properties and macroscopic instability modes. The respective optimality criteria are presented by introducing the Lagrangian associated with the optimization problem. Based on this Lagrangian a first-order method is used as a basis for the numerical update scheme. Two numerical examples to validate the developments are presented and analysed.  相似文献   

15.
The purpose of this paper is to apply stress constraints to structural topology optimization problems with design-dependent loading. A comparison of mass-constrained compliance minimization solutions and stress-constrained mass minimization solutions is also provided. Although design-dependent loading has been the subject of previous research, only compliance minimization has been studied. Stress-constrained mass minimization problems are solved in this paper, and the results are compared with those of compliance minimization problems for the same geometries and loading. A stress-relaxation technique is used to avoid the singularity in the stress constraints, and these constraints are aggregated in blocks to reduce the total number of constraints in the optimization problem. The results show that these design-dependent loading problems may converge to a local minimum when the stress constraints are enforced. The use of a continuation method where the stress-constraint aggregation parameter is gradually increased typically leads to better convergence; however, this may not always be possible. The results also show that the topologies of compliance-minimization and stress-constrained solutions are usually vastly different, and the sizing optimization of a compliance solution may not lead to an optimum.  相似文献   

16.
A heuristic approach to handle strength constraints based on material failure criteria in multi-material topology optimization is presented. This is particularly advantageous if different materials have different failure criteria. The change in the material failure function in an element due to a contemplated material change is estimated without the need for expensive matrix factorizations. This change is used along with the changes to the objective and deflection-based constraint functions, computed using pseudo-sensitivities, to determine a single aggregated ranking parameter for the element. Elements are ranked on the basis of their ranking parameters and this rank is used to modify the material ID-s of a few top-ranked elements during an optimization iteration. The working of the algorithm is demonstrated on a few example problems showing its effectiveness and utility in deriving optimal topologies with multiple materials in the presence of stress and strain-based failure criteria, in addition to the conventional stiffness-based constraints.  相似文献   

17.
Structural and Multidisciplinary Optimization - This work aims at introducing misalignment response in the design of mechanical transmission components using topology optimization. Misalignment...  相似文献   

18.
19.
20.
Stress-based topology optimization   总被引:7,自引:0,他引:7  
Previous research on topology optimization focussed primarily on global structural behaviour such as stiffness and frequencies. However, to obtain a true optimum design of a vehicle structure, stresses must be considered. The major difficulties in stress based topology optimization problems are two-fold. First, a large number of constraints must be considered, since unlike stiffness, stress is a local quantity. This problem increases the computational complexity of both the optimization and sensitivity analysis associated with the conventional topology optimization problem. The other difficulty is that since stress is highly nonlinear with respect to design variables, the move limit is essential for convergence in the optimization process. In this research, global stress functions are used to approximate local stresses. The density method is employed for solving the topology optimization problems. Three numerical examples are used for this investigation. The results show that a minimum stress design can be achieved and that a maximum stiffness design is not necessarily equivalent to a minimum stress design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号