首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼相对长度和翼缝相对宽度对翼型流场结构及升、阻力特性的影响;分别选取襟翼相对长度分别为0.2、0.3和0.4和翼缝相对宽度分别为1.0%、1.5%以及2.0%,着重分析翼缝相对宽度对翼型气动性能的影响。数值结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型;随着襟翼相对长度增大,翼型临界攻角逐渐减小;在攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小。在翼缝流体入口端,主翼末端存在一个涡,随着翼缝相对宽度增大,该涡流范围逐渐扩大;在襟翼前端有局部的压力升高,随着翼缝相对宽度增大,该局部高压范围扩大。  相似文献   

2.
以NACA0018为基准翼型,采用Fluent数值模拟方法对比研究了襟翼相对长度(分别取0.2、0.3和0.4)和翼缝相对宽度(分别取1.0%、1.5%和2.0%)对翼型流场结构及升、阻力特性的影响,并着重分析襟翼相对长度对翼型气动性能的影响.结果表明:由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能;襟翼翼型的失速攻角在研究范围内均大于基准翼型;在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均大于基准翼型,但升力系数的最大值均大于基准翼型;随着襟翼相对长度的增大,翼型失速攻角逐渐减小;当攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼相对长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小.  相似文献   

3.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼几何长度对翼型流场结构及升、阻力特性的影响;分别选取襟翼几何长度分别为0.2、0.3和0.4,翼缝相对宽度为1.5%,分析了襟翼几何长度对翼型气动性能的影响。结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型。  相似文献   

4.
采用Fluent数值模拟的方法,以NACA0018对称翼型为基准翼型,分析了尾缘襟翼翼缝相对宽度不同时,襟翼动态摆动对翼型流场以及升阻力特性分析。选取襟翼相对长度为0.2,襟翼翼缝相对宽度分别为1.0%、1.5%和2.0%,当襟翼最大摆角θ为15°时,分析翼型动态气动性能。数值结果分析表明:襟翼的摆动导致原本对称的翼型不再是对称翼型,改变了翼型的弯度,翼型升力和阻力系数的最大值均增大;相同摆角下,翼缝相对宽度越大,其翼型升力系数值愈大;襟翼在摆角θ为10°~15°时,在襟翼下表面出现尾缘回流涡;当襟翼摆角θ为-10°~-15°时,襟翼上表面出现回流涡,且随着襟翼摆角的增大,该回流涡范围逐渐扩大。  相似文献   

5.
基于Spalart-Allmaras(S-A)湍流模型,针对NACA0012、NACA0015和NACA0018三种厚度对称襟翼翼型在相对翼缝宽度分别为10‰、15‰和20‰下翼型周围流体的流动情况进行数值模拟,对比分析三种对称翼型在攻角(AOA)为-9°~17°下的升、阻力特性曲线以及翼型周围压力云图和流线图,研究厚度影响襟翼翼型空气动力学特性的流体流动机理。结果表明:襟翼翼型的失速攻角随着翼型厚度的增大而增大,翼型厚度的增大可提高翼型周围特别是襟翼周围流体流动稳定性,使得翼型发生流动分离的分离点向尾缘襟翼处移动,减小尾缘分离涡的影响范围和结构复杂度。  相似文献   

6.
为分析齿形襟翼(SGF)尾缘对风力机翼型气动性能及噪声特性的影响,利用SST k-ω湍流模型对装设Gurney襟翼(GF)和SGF的NACA0018翼型进行数值模拟,研究齿高和齿宽对气动性能和静压分布的影响,并采用大涡模拟(LES)对气动性能最优的SGF进行噪声预估和涡结构分析。结果表明:SGF可有效提高翼型升力系数并延迟失速;SGF-0.8-6.7模型可使最大升阻比提高8.61%,失速攻角延迟3°,其在拓宽高升力区间、延迟失速等方面具有最优性能;SGF翼型上下翼面噪声无明显差异,平均声压级随攻角增大而提高;SGF-0.8-6.7模型的尾迹噪声随攻角增大呈现先增后减的变化趋势,随距离增加而降低;翼型辐射噪声呈典型偶极子状,GF噪声小攻角下降低,而大攻角下则增大,SGF在不同攻角下均降噪显著,最大降噪量达10.2 dB;SGF尾涡稳定有序,能耗及损失降低,由此使气动性能和噪声得以明显改善。  相似文献   

7.
为改善叶片失速特性,以具有圆弧形缝道的两段式NACA0021翼型为基础研究模型,设计一种导流式翼缝(Flow-deflecting Gap,FDG),研究在不同的导叶设计参数与不同雷诺数下导流式翼缝在多段翼型被动流动控制中的效果。研究发现:导流式翼缝可在一定攻角范围内抑制甚至消除分离涡的生成及发展;当前翼缝宽度为0.03c,后翼缝宽度为0.01c时,最大升力系数可提升5.33%,失速攻角增大2°,出现较大尺度分离涡的攻角增大2°,升力波动载荷大幅降低;在不同雷诺数下,FDG翼型的最大升力系数均有不同程度提升,失速特性均有不同程度改善,升力波动载荷均大幅降低。  相似文献   

8.
《动力工程学报》2019,(8):654-660
为分析Gurney襟翼对风力机翼型气动性能和气动噪声特性的影响,利用Fluent软件中的LES模型计算攻角为4°~20°时原始翼型和带有不同高度Gurney襟翼翼型的气动性能和流场分布,并基于FW-H声类比方法,利用Acoustics模块精确求解远场气动噪声。结果表明:升力系数大于0.8时,Gurney襟翼能明显增大翼型升力系数,但阻力系数也显著增大;襟翼高度小于3%弦长时,失速攻角明显增大;襟翼高度大于3%弦长时,升力系数增幅减小,阻力系数增幅增大,且气动噪声急剧增加,翼型声辐射特征呈现偶极子声场的特点。  相似文献   

9.
以Spalart-Allmaras(S-A)湍流模型为计算模型,对风力机叶片NACA0018翼型在副翼摆角分别为0°、5°、10°和15°下的流体流动情况进行数值模拟,分析不同攻角下带副翼翼型上升阻力性能曲线以及翼型表面压力分布云图和流场流线图,研究不同摆角对带副翼翼型的空气动力学性能的影响。结果表明:相同攻角时,翼型的升力系数随着副翼摆角的增大而减小;副翼摆角的增大可以增大翼型的失速攻角,改善翼型周围流体的流动状况,提高翼型周围特别是副翼周围流体流动稳定性,抑制流动分离涡的形成。  相似文献   

10.
陈涛  蒋笑  王海鹏  吴洲 《可再生能源》2020,38(6):765-770
文章通过数值模拟方法研究了不同相对厚度的前缘缝翼对S809翼型气动性能的影响,并揭示了前缘缝翼相对厚度对流动控制产生影响的机理。研究结果表明:在大攻角下,空气流经过前缘缝翼会在其尾部产生涡旋,尾缘涡旋的形成有助于抑制S809翼型流动分离,进而改善翼型绕流场;不同相对厚度的前缘缝翼产生尾缘涡旋不同的流动轨迹,对翼型的流动控制作用效果不同;相同条件下,前缘安装最大相对厚度为35%的前缘缝翼能够将S809翼型最大升力系数提升至1.25,失速攻角推迟至17.21°;安装最大相对厚度为14%的前缘缝翼,能够使S809翼型最大升力系数提升至1.53,并使翼型在攻角为20.16°时仍未发生失速。  相似文献   

11.
风力机复杂运行环境使叶片常处于失速环境,导致翼型升力骤降,严重影响风力机气动性能.为改善翼型流动分离,延缓失速,对凹槽-襟翼对翼型动态失速特性作用效果开展研究,并利用计算流体力学方法分析不同折合频率与翼型厚度时凹槽-襟翼对翼型气动性能的影响.结果表明:俯仰振荡过程中,凹槽-襟翼可有效提升翼型吸力面流速,降低失速攻角下逆...  相似文献   

12.
基于翼型参数化方法对翼型S809进行4类不同的前缘修改,分别为前缘压力面加厚、前缘吸力面加厚、前缘上弯和前缘下弯,采用翼型设计分析软件Xfoil和商用CFD(Computational Fluid Dynamics)软件FLUENT分别对翼型气动参数和翼型周围流场进行计算。结果表明:翼型气动特性与流场特性受翼型压力面外形变化影响较小;在研究范围内,翼型吸力面加厚使得翼型在失速区升力系数增加,阻力系数减小;翼型前缘上弯使得翼型在大攻角工况下升力系数减小,阻力系数增大,且使翼型提前失速;在一定范围内翼型前缘下弯,使得翼型升力系数增大,阻力系数减小,且延迟失速。  相似文献   

13.
尾缘襟翼对风力机翼型气动特性影响研究   总被引:1,自引:0,他引:1  
尾缘襟翼(TEF)因其对翼型气动特性的调控能力,被认为是降低叶片疲劳和局部载荷最具可行性的气动控制部件。对TEF进行建模,采用Xfoil和CFD软件分析了TEF对翼型气动特性的影响及其机理,并从叶素理论角度对变化来流下TEF的减载效果进行了验证,结果表明:TEF位于不同摆角时翼型升阻力系数均有不同程度的变化,TEF可有效实现对翼型气动特性的主动控制;TEF摆动改变了翼型表面的静压分布和流动状态,进而对翼型升阻力和失速攻角产生影响;TEF可快速有效降低风速突然增加后的叶素受力,进而控制并减小叶片载荷。  相似文献   

14.
Wind tunnel experiments were conducted at Rensselaer Polytechnic Institute's Center for Flow Physics and Control's subsonic wind tunnel, which experimentally quantified the aerodynamic performance of the S817 airfoil. This study has two main thrusts: Experimentally evaluate common aerodynamic properties of the S817 airfoil, and develop flow control strategies using continuously actuated and pulse‐modulated synthetic jets for future field testing to show the reduction of unsteady loading and increased aerodynamic performance. Quasi‐2D and finite span 3D configurations were utilized, where integrated aerodynamic loading, surface pressure, and stereoscopic particle image velocimetry data were collected to quantify the overall aerodynamic performance and stall characteristics of this airfoil. Experiments showed that synthetic jets, located at x/c=0.35 and angled at 45° with respect to the surface, increased the lift curve slope by 3.8%, the maximum lift coefficient by 10.5%, increased the L/D by as much as 39% at high angles of attack and delayed the stall angle of attack by 3°. Global particle image velocimetry measurements quantified the flowfield and showed flow reattachment could be achieved at various angles of attack using flow control where the flow would otherwise be separated. Near field measurements of the synthetic jet orifice yielded insight as to how synthetic jets interact with the cross‐flow in the time‐ and phase‐averaged sense. For very high angles of attack, a pulsed modulation technique was implemented, demonstrating flow reattachment in scenarios where a sinusoidal synthetic jet actuation scheme was unable to reattach the flow, with the benefit of achieving this with lower energy consumption compared with sinusoidal actuation.  相似文献   

15.
为得到高气动性能、低噪声的风力机专用翼型,基于参数化建模翼型,研究前缘外形对风力机翼型气动性能及气动噪声的影响规律。通过分离涡模拟方法和声学类比方程建立噪声预测方法。针对非对称翼型S809通过样条函数参数化处理前缘改形进行气动噪声计算。结果表明:翼型压力面前缘加厚,对翼型升阻力系数无明显影响,但大攻角时翼型周围压力分布均匀,流动相对稳定,且气动噪声声压级低于原始翼型,随压力面厚度增加气动噪声越大;吸力面加厚使得翼型升力系数增大,阻力系数减小,能抑制翼型失速时尾缘涡与前缘涡的生成,变形量越大气动噪声越小;翼型前缘上弯,翼型在失速区升力系数减小,阻力系数增大,流动越加不稳定,声压级随着攻角的增加呈递增趋势;翼型前缘下弯,翼型处于失速区升力系数增大,阻力系数减小,能抑制流动分离,未生成前缘涡和尾缘涡,当前缘下弯不变时,随加厚厚度增加翼型声压级呈减小趋势,且前缘下弯翼型声压级小于前缘上弯。  相似文献   

16.
通过研究尾缘气动弹片对翼型动态失速特性影响,提出一种基于气动弹片的主动控制策略,使其于大攻角时抬起,小攻角时闭合。并采用计算流体动力学方法对比分析主动式气动弹片对不同厚度翼型抑制流动分离作用的效果。结果表明:对于薄翼型,发生动态失速时,气动弹片可延缓翼型尾缘涡旋与前缘主流涡的相互作用,减小翼型升力系数骤降幅度;随翼型厚度增加,流动分离点从翼型前缘转向后缘,气动弹片可有效分割较大分离涡,减轻流动分离程度,限制分离涡发展,同时抑制尾缘伴随小涡产生,提高翼型升阻比。  相似文献   

17.
以NACA0018翼型为原始模型进行前缘结构设计,采用计算流体动力学(CFD)方法分析凹凸前缘结构参数对叶片绕流流动及气动性能的影响。结果表明:在0°~10°攻角范围内,凹凸前缘叶片气动性能与原始叶片基本一致,但在15°~25°攻角范围内,正弦波形凹凸前缘叶片升力系数最大提升20.2%;叠加波形凹凸前缘叶片在15°~25°攻角内,气动性能均有不同程度的下降,波峰处推迟分离,而在波谷分离提前,在吸力面每个波谷顺流方向叶片及展向形成反向涡对,相互卷吸并与主流掺混增加能量交换向尾缘处移动,改变了叶片原始流场反馈回路,阻碍了叶片展向涡及流向涡的发展。  相似文献   

18.
基于翼型参数化方法对翼型S809进行两类不同的前缘修改,采用翼型设计分析软件Xfoil对修改前、后的翼型进行气动性能计算分析,并采用计算流体力学(CFD)数值模拟方法进行流场特性分析。结果表明:翼型前缘下弯使得翼型在失速区升力系数增大,阻力系数减小,俯仰力矩系数减小,转捩现象延迟,翼型前缘上弯对气动性能的影响与之相反;翼型前缘上弯和下弯使得翼型表面压力系数分布均匀,吸力面及压力面压力系数增大;翼型前缘下弯能够抑制流动分离,抑制涡的形成,延迟翼型失速,翼型前缘上弯对翼型流场特性的影响则与之相反。  相似文献   

19.
利用振荡扰流进行了改善风力机翼型大攻角下性能的研究。应用有限体积法,数值模拟了头部附加振荡扰流的翼型分离流动,并对振荡扰流增升效果的参数影响进行了分析。结果表明在深失速条件下,翼型头部附加的振荡扰流在一定的频率和振幅时能够显著改善翼型的气动性能,提高翼型的升力。与扰流振幅相比,调节扰流振荡频率更能改善翼型深失速条件下的气动性能。  相似文献   

20.
为提高风力机叶片翼型气动性能,在NACA0018翼型上表面附加类似于鸟类羽毛的弹片,通过数值模拟方法研究弹片参数包括弹片角度、位置和长度对翼型气动性能的影响。结果表明:在失速攻角之前,弹片产生负面影响,而失速攻角之后,弹片产生预期效果,且在每个攻角下存在一个最优弹片角度,攻角越大,对应最优弹片角度也越大,但并非线性关系;失速攻角前,弹片位置越靠近尾缘,其带来的负面影响越小,而在失速攻角后,弹片越靠近前缘效果越佳,阻力系数最高降低67.04%,且失速攻角由14°推迟到16°左右;失速攻角前,弹片越短,弹片所带来负面影响越小,失速攻角之后弹片长度越长效果越好,阻力系数最大减小40%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号