首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
带肋壁与气膜孔内流通道中肋高度对流量系数的影响   总被引:4,自引:3,他引:4  
在根据相似理论放大的模型上,测量了同时带肋壁与气膜孔内流通道中沿主流流向分布的各气膜孔的流量系数Cd。实验在内流通道进口雷诺数Re为20000~80000,通道总出流比SR为0 30~0 60,肋截面高宽比h/e为1 0和2 0以及肋角为60°的范围内进行,重点分析了肋高度对Cd的影响规律,并且进行了相应的数值模拟研究。结果显示:在低进口雷诺数Re(20000)和低通道总出流比SR(0 3),沿内流通道布置的各出流孔Cd通道前半部是上升的,在第五对孔时达到最大值,然后又沿通道而下降;在相同流动状况下,随肋高度的增大,肋所诱导的二次流强度增大,对带60°肋的通道而言,气膜孔流量系数降低。  相似文献   

2.
航空发动机全天候全域长航时运行时,颗粒随着二次流空气系统进入到涡轮叶片内部,沉积堵塞在涡轮叶片内冷通道中,严重影响了涡轮叶片的冷却性能。本文采用计算流体力学和离散单元法(CFD-DEM)相结合的方法研究了涡轮叶片带肋细小矩形内冷通道中微尘颗粒的流动和沉积特性。所研究的内冷通道肋片周期性布置在通道的一侧,肋片阻塞比和肋间距比分别为0.024和10,考虑了平行直肋、45°斜肋和45°V肋3种肋结构,详细分析了雷诺数、颗粒斯托克斯数、入口颗粒体积分数和肋片的类型对颗粒流动和沉积特性的影响规律。结果表明:颗粒沉积主要发生在第1根肋片的前缘处;颗粒的沉积质量均随着雷诺数、斯托克斯数和颗粒体积分数增加而减小;在所有的肋片类型中,直肋布置时颗粒沉积现象最明显,其次是V肋,斜肋拥有最小的颗粒沉积质量。  相似文献   

3.
采用ANSYS CFX商用软件对带肋矩形直通道内的冷却空气换热特性进行了数值计算,并与文献[4]的实验数据进行了对比,分析了雷诺数Re和肋片角度对努塞尔特数Nu的影响。结果表明:Nu数计算平均值与实验值的变化趋势一致,但计算结果大于实验值;由于肋片的扰流作用,在两个肋片之间的壁面区域产生了两个旋涡,强化了冷却空气与固体壁面的换热;随着Re数的增大,Nu数增大,平均摩擦阻力系数也增大;当肋片角度在45°~60°之间时,冷却通道的强化对流换热效果最好。  相似文献   

4.
席雷  高建民  徐亮  赵振 《汽轮机技术》2021,63(4):268-272
以带45°肋矩形通道为研究对象,实验测量了通道进、出口温度和压力以及壁面温度,分析了雷诺数(Re=10000~60000)和宽高比(W/H=0.25~4)对通道内冷气流动和传热性能及其引起的不可逆熵产的影响规律,对比了蒸汽冷却和空气冷却的不同.研究表明:不同雷诺数时,蒸汽冷却的传热性能较空气冷却提高了25%~33%;蒸...  相似文献   

5.
运用数值计算的方法将流动方向扰流圆柱排列密度对涡轮叶片尾缘冷却通道中流动传热的影响进行了三维数值研究。研究了流动雷诺数、流动方向圆柱排列密度对肋柱扰流矩形通道表面传热影响的规律。计算结果表明:在研究范围内,肋柱表面的平均Nu均随着Re的增大而增大。在Re相同的情况下,随X/D取值的增大,肋柱表面平均Nu有所减小。Nu在通道进口附近逐渐增加,然后达到充分发展值。传热在迎向流动方向的圆柱侧较强,在流动向背侧表面传热较弱。沿圆柱高度方向在中部传热较强。  相似文献   

6.
为了利用螺旋流动强化传热的特性并简化换热器结构,结合螺旋折流板换热器的结构和流体流动特点,开发了一种螺旋肋片自支撑换热器.为了掌握螺旋肋片自支撑换热器的传热和压降综合性能,建立了换热器的试验模型和试验装置.在相同的试验条件下与折流杆换热器进行对比试验,结果表明:当雷诺数Re=6000时螺旋肋片换热器的总传热系数比折流杆换热器提高13.3%,并随着雷诺数增大强化传热效果更加显著;而同时压力梯度却降低了87.5%,并随雷诺数增大二者的压力梯度差值变大.在试验雷诺数2 000~6 500的范围内,螺旋肋片换热器的综合性能K/▽P值是折流杆换热器的1.4~2倍.可见,螺旋肋片换热器具有较高的传热系数和较低的压降,因而具有良好的发展及应用前景.  相似文献   

7.
本文采用数值模拟的方法研究了一种新型组合肋通道的流动与传热特性,主要对比了不同肋型通道的传热性能和阻力性能,考察了雷诺数、肋间距和肋高对通道壁面特征数的影响规律.结果 表明与矩形肋、半圆肋通道相比,组合肋通道的综合传热性能最好,且阻力损失小.  相似文献   

8.
为了研究带有交错内肋微通道的流动和传热特性,采用数值模拟的方法分析了肋片的形状对微通道热力性能的影响,对比了矩形肋、菱形肋、三角形肋和圆形肋4种不同形状内肋结构的微通道和光滑矩形微通道的热力性能。结果表明:矩形肋、菱形肋、三角形肋和圆形肋微通道的努塞尔数Nu都大于光滑矩形微通道的努塞尔数Nu,最大值分别为光滑矩形微通道的2.59,2.71,2.90和2.48倍;肋片对微通道的传热特性具有显著的强化作用,这是由于流体在交错内肋的后方产生涡流,实现整个流场的全局强化传热,极大提升微通道传热特性;交错内肋的应用也增大了通道的摩擦系数,矩形肋、菱形肋、三角形肋和圆形肋微通道摩擦系数的最大值分别为光滑矩形微通道的8.66,7.96,17.50和5.96倍。  相似文献   

9.
为了更好地认识肋化通道的流动特性,采用非结构化网格及standard к-ε紊流模型,求解三维N-S方程,对带60°肋和气膜孔出流的旋转矩形通道内的三维流场进行了数值模拟,气动参数为:通道人口雷诺数60000,旋转数0和0.11,气膜孔总出流比0.22.重点分析了静止通道和不同旋转方向的旋转通道的流场分布.计算结果表明,静止通道由于斜肋的导流作用产生了平行于肋方向的速度矢量,旋转对流场的影响明显地强于肋对流场的影响.计算结果有利于理解肋化通道的强化换热机理以及孔流量系数的大小.  相似文献   

10.
基于Nusselt凝结传热理论,沿肋片管圆周方向划分有限个微元角,建立了每个微元角内肋侧壁、肋间基管及肋顶三个区域的凝结传热模型,通过求解非淹没区和淹没区总传热量,推导管外平均传热系数计算式。计算不同肋片高度、肋密度时,R134a饱和蒸汽的管外平均凝结传热系数。结果表明:随肋密度的增加,平均传热系数先增大后减小,肋密度为25fpi时传热最佳;高肋片管的平均凝结传热系数大于低肋片管的,肋片高度达到一定值时,平均传热系数几乎不随肋高增加而增加。当R134a饱和蒸汽为20℃时,两种不同翅片密度的管外平均凝结传热系数随温差的增大而减小,并通过所建模型得到的计算值与Beatty-Kate模型进行了比较,平均误差分别为约16.1%和8.3%,故所建模型基本反映肋片管外蒸汽凝结传热机理。  相似文献   

11.
Effects of aspect ratio on heat/mass transfer were investigated in rectangular channels with two different V-shaped rib configurations, which are continuous V-shaped rib configuration with a 60° attack angle, and multiple (staggered) V-shaped rib configuration with a 45° attack angle. The square ribs were attached on the test section in a parallel manner. A naphthalene sublimation method was used to measure the local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices were generated in the channel, and high transfer region was formed at the center of the ribbed walls. However, for the multiple V-shaped rib configuration with 45° attack angle, asymmetric secondary flow patterns were generated due to its geometric features, resulting in uniform heat/mass transfer distributions. The effect of channel aspect ratio was more significant for the continuous 60° V-shaped rib than for the multiple 45° V-shaped rib configuration.  相似文献   

12.
Repeated ribs are used on heat exchange surfaces to promote turbulence and enhance convective heat transfer. Applications include fuel rods of gas-cooled nuclear reactors, inside cavities of turbine blades, and internal surfaces of pipes used in heat exchangers. Despite the great number of literature papers, only few experimental data concern detailed distribution of the heat transfer coefficient in channels with rib turbulators. This issue was tackled by means of the steady-state liquid crystal thermography: a pre-packaged liquid crystal film was glued onto the heated surface, and the colour map was taken by a video camera at the steady state of a given experiment. After calibration tests to assess the colour-temperature relationship had been performed, local heat transfer coefficients were obtained by applying custom-made software to process the digitised colour images. Liquid crystal thermography was applied to the study of heat transfer from a rectangular channel (width-to-height ratio equal to five) having one surface heated at uniform heat flux and roughened by repeated ribs. The ribs, having rectangular or square sections, were deployed transverse to the main direction of flow or V-shaped with an angle of 45 or 60 deg relative to flow direction. The effect of continuous and broken ribs was also considered. Local heat transfer coefficients were obtained at various Reynolds numbers, within the turbulent flow regime. Area-averaged data were calculated in order to compare the overall performance of the tested ribbed surfaces and to evaluate the degree of heat transfer enhancement induced by the ribs with respect to the smooth channel.  相似文献   

13.
Ribbing the internal passages of turbine blades with 45 deg inclined ribs is a common practice to achieve a good compromise between high heat transfer coefficients and not too large pressure drop penalties. Literature studies demonstrated that, for channels having a large aspect ratio, the effect of the secondary vortices induced by angled ribs is reduced and the heat transfer performance is degraded. In order to enhance the performance, a possible strategy consists in introducing one or more longitudinal ribs (intersecting ribs) aligned to the main direction of flow. The intersecting ribs cut the ribbed channel into separate sub-channels and markedly affect the secondary flows with consequent increases in heat transfer performance. Experiments were performed for a rectangular channel with a large aspect ratio (equal to five) and 45 deg inclined ribs, regularly spaced on one of the principal walls of the channel. The effect of one and two intersecting ribs on friction and heat transfer characteristics has been investigated. The ribbed surface of the channel has been electrically heated to provide a uniform heat flux condition over each inter-rib region. The convective fluid was air. Heat transfer experiments have been conducted by using the liquid crystal thermography. Results obtained for the ribbed channel without intersecting rib and with one/two intersecting ribs are compared in terms of dimensionless groups.  相似文献   

14.
对内肋管内部流体的湍流换热过程进行了数值模拟,讨论了肋高和肋的轴向夹角对换热的影响。相比于普通圆管,内肋圆管内的传热性能明显得到提高。无量纲肋高度和角度分别为0.8°和40°时传热效果最佳,而在0.1°和40°时换热与阻力的比值(Performance Evaluation Criteria,PEC)最大,综合换热性能最佳,可用于强化地源热泵地埋管换热。此外,本研究从火积耗散与传热效率的角度分析了内肋强化传热机理,得到管壁冷却管内流体的火积传递效率计算式,为内肋管强化换热的深入分析提供了依据。  相似文献   

15.
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio(p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°.Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°,75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.  相似文献   

16.
Rib turbulators are extensively used in augmentation of convective heat transfer in several applications related to heat exchange and cooling in thermal energy systems. Present experimental investigation examines the local heat transfer and friction factor characteristics of pentagonal ribs mounted on bottom heated wall of a rectangular channel. The emphasis is towards assessing and analysing the potential impact of varying chamfering angle (0 to 20°) and rib pitch to height ratio (6 to 12) on the overall heat transfer enhancement and its distribution on the surface. Experiments are performed at different Reynolds numbers ranging from 9400 to 58850. Liquid crystal thermography is applied to measure surface temperature distribution and finally to demonstrate the local heat transfer coefficient over the ribbed surface. The results depict that the local augmentation Nusselt number distribution is axisymmetric and shows 2-dimensionalty in heat transfer distribution. Pentagonal ribs show a significant improvement for the low heat transfer zones in leeward vicinity of the square rib, specially prominent at higher Reynolds number, and therefore seen as the potential benefit in terms of obviating the hotspots. It is observed that the pentagonal ribs lead to superior heat transfer enhancement in conjunction with significant reduction in pressure penalty as compared to square ribs and thus ensures an enhanced thermo-hydraulic performance.  相似文献   

17.
A numerical work has been conducted to examine turbulent periodic flow and heat transfer characteristics in a three dimensional square-duct with inline 60° V-shaped discrete thin ribs placed on two opposite heated walls. The isothermal-flux condition is applied only to the upper and lower duct walls while the two sidewalls are insulated, similar to internal passage cooling of gas turbine blades. The computations are based on the finite volume method with the SIMPLE algorithm for handling the pressure–velocity coupling. Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 10,000 to 25,000. The numerical result is validated with available square-rib measured data and found to agree well with measurement. The computation reveals that the ribbed duct flow is fully developed periodic flow and heat transfer profiles at about x/D = 7–11 downstream of the inlet. Effects of different rib height to duct diameter ratios, BR, on thermal characteristics for a periodic ribbed duct flow are investigated. It is found that a pair of counter-rotating vortices (P-vortex) caused by the rib can induce impingement/attachment flows on the walls leading to greater increase in heat transfer over the test duct. In addition, the rise of BR values leads to the increase in heat transfer and friction loss. The maximum thermal performance is around 1.8 for the rib with BR = 0.0725 where the heat transfer rate is about 4.0 times above the smooth duct at lower Reynolds number.  相似文献   

18.
An experimental study of heat transfer characteristics in superheated steam cooled rectangular channels with parallel ribs was conducted.The distribution of the heat transfer coefficient on the rib-roughed channel was measured by IR camera.The blockage ratio(e/Dh) of the tested channel is 0.078 and the aspect ratio(W/H) is fixed at3.0.Influences of the rib pitch-to-height ratio(P/e) and the rib angle on heat transfer for steam cooling were investigated.In this paper,the Reynolds number(Re) for steam ranges from 3070 to 14800,the rib pitch-to-height ratios were 8,10 and 12,and rib angles were 90°,75°,60°,and 45°.Based on results above,we have concluded that:In case of channels with 90° tranverse ribs,for larger rib pitch models(the rib pitch-to-height ratio=10 and12),areas with low heat transfer coefficient in front of rib is larger and its minimum is lower,while the position of the region with high heat transfer coefficient nearly remains the same,but its maximun of heat transfer coefficient becomes higher.In case of channels with inclined ribs,heat transfer coefficients on the surface decrease along the direction of each rib and show an apparent nonuniformity,consequently the regions with low Nusselt number values closely following each rib expand along the aforementioned direction and that of relative high Nusselt number values vary inversely.For a square channel with 90° ribs at Re= 14800,wider spacing rib configurations(the rib pitch-to-height ratio=10 and 12) give an area-averaged heat transfer on the rib-roughened surface about8.4%and 11.4%more than P/e=8 model,respectively;for inclined parallel ribs with different rib angles at Re=14800,the area-averaged heat transfer coefficients of 75°,60° and 45° ribbed surfaces increase by 20.1%,42.0%and 44.4%in comparison with 90° rib angle model.45° angle rib-roughened channel leads to a maximal augmentation of the area-averaged heat transfer coefficient in all research objects in this paper.  相似文献   

19.
Detailed heat transfer coefficient distributions are obtained for high aspect ratio (width/height = 12.5) duct with rib and trench enhancement features oriented normal to the coolant flow direction. A transient thermochromic liquid crystal technique has been used to experimentally measure heat transfer coefficients from which Nusselt numbers are calculated on the duct surface featuring heat transfer enhancement features. Reynolds number (calculated based on duct hydraulic diameter) ranging from 7100 to 22400 were experimentally investigated. Detailed measurements of heat transfer provided insight into the role of protruding ribs and trenches on the fluid dynamics in the duct. Experimentally obtained Nusselt numbers are normalized by Dittus-Boelter correlation for developed turbulent flow in circular duct. The triangular trenches provide heat transfer enhancement ratios up to 1.9 for low Reynolds numbers. The in-line rib configuration shows similar levels to the trench whereas staggered rib configuration provides heat transfer enhancement ratios up to 2.2 for a low Reynolds number of 7100.  相似文献   

20.
In this work, results of an experimental investigation of the effect of geometrical parameters of V-shaped ribs on heat transfer and fluid flow characteristics of rectangular duct of solar air heater with absorber plate having V-shaped ribs on its underside have been reported. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions. The investigation has covered a Reynolds number (Re) range of 2500-18000, relative roughness height (e/Dh) of 0.02-0.034 and angle of attack of flow (α) of 30-90° for a fixed relative pitch of 10. Results have also been compared with those of smooth duct under similar flow conditions to determine the enhancement in heat transfer coefficient and friction factor. The correlations have been developed for heat transfer coefficient and friction factor for the roughened duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号