首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent conducting cadmium oxide (CdO) films were deposited on PET (polyethylene terephthalate) substrate by DC reactive magnetron sputtering at room temperature. All the films deposited at room temperature were polycrystalline in rock-salt structure. Dependences of the physical properties of the CdO films on the oxygen partial pressure were systematically studied. The films deposited at low oxygen flow rate were (200) oriented, while the films deposited at an oxygen flow rate greater than 20 sccm were (111) oriented. The average grain size of the CdO films decreased as the oxygen flow rate increases as determined by XRD and SEM. The Hall effect measurement showed that CdO films have high concentration, low resistivity, and high mobility. Both the mobility and the concentration of the carrier decreased with the increase of the oxygen flow rate. A minimum sheet resistance of 36.1 Ω/□, or a lowest resistivity of 5.44 × 10− 4 Ω cm (6.21 × 1020/cm3, μ = 19.2 cm2/Vs) was obtained for films deposited at an oxygen flow rate of 10 sccm.  相似文献   

2.
Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 × 10− 4 Ω cm on glass while that on the polyimide was 1.9 × 10− 4 Ω cm. Substrate temperatures above 100 °C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells.  相似文献   

3.
Highly conducting and transparent thin films of tin-doped cadmium oxide were deposited on quartz substrate using pulsed laser deposition technique. The effect of growth temperature on structural, optical and electrical properties was studied. These films are highly transparent (78-89%) in visible region, and transmittance of the films depends on growth temperature. It is observed that resistivity increases with growth temperature after attaining minimum at 150 °C, while carrier concentration continuously decreases with temperature. The lowest resistivity of 1.96 × 10− 5 Ω cm and carrier concentration of 5.52 × 1021 cm3 is observed for the film grown at 150 °C. These highly conducting and transparent tin-doped CdO thin films grown via pulsed laser deposition could be an excellent candidate for future optoelectronic applications.  相似文献   

4.
Thin films of indium doped cadmium oxide were deposited on quartz substrate using pulsed laser deposition technique. The effect of growth temperature and partial oxygen pressure on structural, optical and electrical properties was studied. We find that the optical transparency of the films largely depends on the growth temperature, while partial oxygen pressure has virtually no effect on the transparency of the films. Electrical properties are found to be sensitive to both the growth temperature and oxygen pressure. It is observed that conductivity and carrier concentration decreases with temperature. The film grown at 200 °C under an oxygen pressure of 5.0 × 10− 4 mbar shows high mobility (155 cm2/V s), high carrier concentration (1.41 × 1021 cm3), and low resistivity (2.86 × 10− 5 Ω cm).  相似文献   

5.
SrCu2O2 (SCO) thin films have been fabricated by pulsed laser deposition at oxygen partial pressures between 5 × 10− 5-5 × 10− 2 mbar and substrate temperatures from 300 °C to 500 °C. All films were single-phase SrCu2O2, p-type materials. Films deposited at a substrate temperature of 300 °C and oxygen pressure 5 × 10− 4 mbar exhibited the highest transparency (∼ 80%), having conductivity 10− 3 S/cm and carrier concentration around 1013 cm− 3. Films deposited at oxygen partial pressure higher than 10− 3 mbar exhibited higher conductivity and carrier concentration but lower transmittance. Depositions at substrate temperatures higher than 300 °C gave films of high crystallinity and transmittance even for films as thick as 800 nm. The energy gap of SrCu2O2 thin films was found to be around 3.3 eV.  相似文献   

6.
This paper investigates the nematic liquid crystal (NLC) alignment on ion beam-exposed zinc oxide (ZnO) films. The ZnO films are deposited by a radio frequency magnetron sputtering. During the deposition of ZnO film, we supplied sufficient oxygen gas for high resistivity and transmittance. The deposited films show a high transmittance of over 90% and high resistivity of over 1010 Ω cm. The ZnO films show a high deposition rate of 26.7 Å/min. Images obtained via scanning electron microscopy of the ZnO film surfaces, before and after the ion beam exposure, show that groove patterns are formed being to be parallel to the ion beam exposure direction. LC cells are fabricated with the ion beam-exposed ZnO films. The NLC molecules align parallel to the ion beam exposure direction. The electro-optic and response characteristics of fabricated cells show the possibility of application to liquid crystal displays.  相似文献   

7.
Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 × 10− 3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters.  相似文献   

8.
W.S. Jung  S.M. Kang  D.H. Yoon 《Thin solid films》2008,516(16):5445-5448
ITO:Ca composite thin films were deposited on glass substrate by the rf magnetron co-sputtering method with various numbers of Ca chips and oxygen partial pressures. The carrier concentration of the ITO:Ca thin film was 7 × 1020 cm− 3 when the number of Ca chips was 4 at an oxygen partial pressure of 1.4%. The sheet resistance and optical transmittance of the ITO:Ca thin films were 68.2 Ω/sq. and 87%, respectively. The work function of the ITO:Ca thin films with 8 Ca chips was changed from 4.6 eV to 5.0 eV when the oxygen partial pressure was increased from 0.8% to 2.2%. When the oxygen partial pressure was 1.2%, a low work function of 4.6 eV was obtained for the ITO:Ca thin films.  相似文献   

9.
Indium tin oxide thin films were deposited onto polyethylene terephthalate substrates via thermionic enhanced DC magnetron sputtering at low substrate temperatures. The structural, optical and electrical properties of these films are methodically investigated. The results show that compared with traditional sputtering, the films deposited with thermionic emission exhibit higher crystallinity, and their optical and electrical properties are also improved. Indium tin oxide films deposited by utilizing thermionic emission exhibit an average visible transmittance of 80% and an electrical resistivity of 4.5 × 10−4 Ω cm, while films made without thermionic emission present an average visible transmittance of 74% and an electrical resistivity of 1.7 × 10−3 Ω cm.  相似文献   

10.
The area of metal oxynitrides is poorly explored, and understanding of the fundamental mechanism that explains structural, mechanical, electrical, and optical properties is still insufficient. Therefore, the purpose of the present investigation is to analyze structural, electrical, and optical properties of ZrNxOy films deposited by reactive cathodic arc evaporation.Depending on the oxygen flow, cubic ZrN:O, monoclinic ZrO2:N, and tetragonal ZrO2:N phases films were prepared. The sheet resistance and the optical transmittance very much depend on the oxygen flow. Optical transparent ZrNxOy films with transmittance of 86% at 650 nm, the sheet resistance 1.1 · 103 Ω/sq, and the figure of merit 2 · 10− 4 Ω− 1 are deposited with the 60 sccm oxygen flow.  相似文献   

11.
Fluorine-doped tin oxide (FTO) films were prepared at different substrate temperatures by ultrasonic spray pyrolysis technique on glass substrates. Among F-doped tin oxide films, the lowest resistivitiy was found to be 6.2 × 10− 4 Ω-cm for a doping percentage of 50 mol% of fluorine in 0.5 M solution, deposited at 400 °C. Hall coefficient analyses and secondary ion mass spectrometry (SIMS) measured the electron carrier concentration that varies from 3.52 × 1020 cm− 3 to 6.21 × 1020 cm− 3 with increasing fluorine content from 4.6 × 1020 cm− 3 to 7.2 × 1020 cm− 3 in FTO films deposited on various temperatures. Deposition temperature on FTO films has been optimized for achieving a minimum resistivity and maximum optical transmittance.  相似文献   

12.
ITO films were deposited onto glass substrates by ion beam assisted deposition method. The oxygen ions were produced using a Kaufman ion source. The oxygen flow was varied from 20 until 60 sccm and the effect of the oxygen flow on properties of ITO films has been studied. The structural properties of the film were characterized by X-ray diffraction and atomic force microscopy. The optical properties were characterized by optical transmission measurements and the optical constants (refractive index n and extinction coefficient k) and film thickness have been obtained by fitting the transmittance using a semi-quantum model. The electrical properties were characterized by Hall effect measurements. It has been found that the ITO film with low electrical resistivity and high transmittance can be obtained with 40 sccm oxygen flow (the working pressure is about 2.3 × 10− 2 Pa at this oxygen flow).  相似文献   

13.
The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage.Experimental results show that the IMO films consist of a cubic bixbyite B-In2O3 single phase with its crystal preferred orientation alone B(222). Mo6+ ions are therefore considered to partially substitute In3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 × 10− 4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate.  相似文献   

14.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm.  相似文献   

15.
Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass, polycarbonate (PC), and polyethylene terephthalate (PET) substrates by r.f. magnetron sputtering. The substrate dc bias voltage varied from 0 V to 50 V. Structural, electrical and optical properties of the films were investigated. The deposition rate of ZnO:Al films on glass substrate initially increased with the bias voltage, and then decreased with further increasing bias voltage. It was found that the best films on glass substrate with a low as 6.2 × 10− 4 Ω cm and an average transmittance over 80% at the wavelength range of 500-900 nm can be obtained by applying the bias voltage of 30 V. The properties of the films deposited on polymer substrate, such as PC and PET, have a similar tendency, with slightly inferior values to those on glass substrate.  相似文献   

16.
Nanocrystalline bismuth oxide thin films have been deposited by thermal oxidation, in air, of vacuum evaporated chopped bismuth thin films. The optical properties and adhesion have been studied. The oxidation temperature and duration were varied. As revealed by structural investigations, polycrystalline and multiphase bismuth oxide thin films were obtained. At all oxidation temperatures, monoclinic Bi2O3 is predominant. The films showed high transmittance in the visible range of spectrum. The direct band gap of the films obtained was between 2.78 eV and 3.04 eV. The refractive index observed is in the range 1.934 to 2.096. The adhesion of films was in the range 215 × 102 to 470 × 102 kgF/cm2. The values are strongly influenced by the heat treatment characteristics. It was observed that chopping helps in improving the adhesion and increasing refractive index, packing density and band gap of bismuth oxide thin films. These bismuth oxide films can have potential use in optical waveguides.  相似文献   

17.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

18.
Indium tin oxide (ITO) films were deposited by reactive High Target Utilisation Sputtering (HiTUS) onto glass and polyimide substrates. The ion plasma was generated by an RF power source while the target bias voltage was varied from 300 V to 500 V using a separate DC power supply. The deposition rate, at constant target power, increased with DC target voltage due to increased ion energy reaching 34 nm/min at 500 V. All the films were polycrystalline and showed strong (400) and (222) reflections with the relative strength of latter increasing with target bias voltage. The resistivity was lowest at 500 V with values of 1.8 × 10− 4 Ω cm and 2.4 × 10− 4 Ω cm on glass and polyimide, respectively but was still less than 5 × 10− 4 Ω cm at 400 V. All films were highly transparent to visible light, (> 80%) but the NIR transmittance decreased with increasing target voltage due to higher free carrier absorption. Therefore, ITO films can be deposited onto semiconductor layers such as in solar cells, with minimal ion damage while maintaining low resistivity.  相似文献   

19.
Indium zinc oxide films were grown from targets with two different In atomic concentration [In/(In + Zn)] of 40% and 80% by the pulsed laser deposition technique on glass substrates from room temperature up to 100 °C. X-ray diffraction and reflectometry investigations showed that films were amorphous and dense. Thin films (thickness < 100 nm) exhibited higher optical transmittance and resistivities than thick films (thickness > 1000 nm), probably caused by a significant decrease of oxygen vacancies due to atmosphere exposure. Films deposited from the In rich target under an oxygen pressure of 1 Pa exhibited optical transmittance higher than 85%, resistivities around 5- 7 × 10− 4 Ω cm and mobilities in the 47-54 cm2/V s range.  相似文献   

20.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号