首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P.H. Tai  C.H. Jung  Y.K. Kang  D.H. Yoon   《Thin solid films》2009,517(23):129-6297
12CaO·7Al2O3 electride (C12A7:e) doped indium tin oxide (ITO) (ITO:C12A7:e) thin films were fabricated on a glass substrate by an RF magnetron co-sputtering system with increasing number of C12A7:e chips (from 1 to 7) and at various oxygen partial pressure ratios. The optical transmittance of the ITO:C12A7:e thin film was higher than 70% in the visible wavelength region. In the electrical properties of the thin film, a decrease of the carrier concentration from 2.6 × 1020 cm− 3 to 2.1 × 1018 cm− 3 and increase of the resistivity from 1.4 × 10− 3 Ω cm to 4.1 × 10− 1 Ω cm were observed with increasing number of C12A7:e chips and oxygen partial pressure ratios. It was also observed that the Hall mobility was decreased from 17.27 cm2·V− 1·s− 1 to 5.13 cm2·V− 1·s− 1. The work function of the ITO thin film was reduced by doping it with C12A7:e.  相似文献   

2.
W.S. Jung  S.M. Kang  D.H. Yoon 《Thin solid films》2008,516(16):5445-5448
ITO:Ca composite thin films were deposited on glass substrate by the rf magnetron co-sputtering method with various numbers of Ca chips and oxygen partial pressures. The carrier concentration of the ITO:Ca thin film was 7 × 1020 cm− 3 when the number of Ca chips was 4 at an oxygen partial pressure of 1.4%. The sheet resistance and optical transmittance of the ITO:Ca thin films were 68.2 Ω/sq. and 87%, respectively. The work function of the ITO:Ca thin films with 8 Ca chips was changed from 4.6 eV to 5.0 eV when the oxygen partial pressure was increased from 0.8% to 2.2%. When the oxygen partial pressure was 1.2%, a low work function of 4.6 eV was obtained for the ITO:Ca thin films.  相似文献   

3.
Thermal post deposition treatments are applied to DC-sputtered aluminum-doped zinc oxide (ZnO:Al) films and lead to a significant improvement of the electrical properties. Protective layers of amorphous silicon are used to protect the films from degradation during the high temperature treatment. Annealing for 6 hours at 500 °C leads to a carrier mobility of 48 cm2/Vs at a carrier concentration of 5.5 · 1020 cm− 3. Furthermore, improvements in the optical as well as in the electrical properties are possible at the same time compared to the as-deposited film. This is achieved by carrying out two thermal treatments to the ZnO:Al film, one prior to the capping with the protective layer and one afterwards. A series of samples with different carrier concentrations allows us to draw conclusions on the specific electrical transport properties.  相似文献   

4.
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved.The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10− 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.  相似文献   

5.
The structural, electrical and moisture resistance properties of Ga-doped ZnO (GZO) films with 200 nm thickness in terms of their dependence on oxygen gas flow rate (fO2) during deposition were studied. GZO films are deposited on glass substrates by ion plating with DC arc discharge. After a reliability test at a temperature of 60 °C and a relative humidity of 95% for 500 h, the percentage of resistivity change of GZO films decreased from 16–20% to 3–11% with increasing fO2 from 6–12 to 14–25 sccm. The minimum percentage of the resistivity change was observed in the GZO films deposited at fO2 of 21 sccm and the resistivity after the reliability test was 3.5 × 10− 4 Ω cm. The effects of the intrinsic defects on the percentage of resistivity change are discussed on the basis of electrical and optical characteristics of GZO films.  相似文献   

6.
In the present study, the Copper Phthalocyanine (CuPc)/ITO thin film was fabricated using thermal evaporation method. The structural property was analyzed by X-ray diffraction study and confirms that the thin film has been preferentially grown along (200) plane. The atomic force microscope study was carried out on deposited film and quality of thin films is assessed by calculating the roughness of the films. The direct and indirect band gap, linear and nonlinear optical characteristics of grown films were calculated by using UV–Vis–NIR spectrometer studies. The calculated values of the first direct and indirect band gaps (Eg1(d) & Eg1(ind)) are 1.879 and 1.644 eV as a fundamental gap, while the values of second direct and indirect band gap (Eg2(d) & Eg2(ind)) are 1.660 and 1.498 eV as an onset gap for CuPc. The values of nonlinear refractive index (n2) and third order nonlinear optical susceptibility (χ3) are found to be 5 × 10−8 and 8 × 10−9 (theoretical) and 5.2 × 10−8 and 1.56 × 10−7 (experimental) respectively. The optical band and third order nonlinear properties suggest that the as-prepared films are may be applied in optoelectronic and nonlinear applications.  相似文献   

7.
AlZnO thin films with various Al/Zn composition ratios were deposited by atomic layer deposition (ALD) at 200 °C. The effect of the composition of the AlZnO films on their electrical and optical characteristics was investigated. The AlZnO films with an Al content of up to 10 at.% showed high conductivity, while further increasing in the Al content resulted in the abrupt formation of an insulating oxide film. The lowest electrical resistivity of the ALD-deposited AlZnO film was 6.5 × 10− 4 [Ω cm] at 5 at.% Al. The AlZnO films with up to 5 at.% Al exhibited crystalline phases and a near-band-edge emission. With increasing Al content, the optical band edge showed a blue shift, and a sudden shift associated with an insulating bandgap was observed in the AlZnO films containing 20 at.% Al.  相似文献   

8.
Over the past few decades, the field of transparent conducting oxides has undergone tremendous advances. With the rapid growth of optoelectronic applications related to display technologies, traditional materials such as Sn-doped indium oxide (ITO) are now widely used as transparent electrodes. In addition, with the advent of p-type transparent conductors, through the transparent pn-junction building block, a wide range of functional transparent optoelectronic devices have been demonstrated including UV-emitting diodes, UV-detectors, and transparent thin film transistors. This paper will highlight the unique characteristics of oxide materials based on the delafossite structure with a focus on the interrelationship between the chemistry, crystal structure, process conditions, and electrical and optical properties. The delafossite structure (ABO2) is characterized by a layer of linearly coordinated A cations stacked between edge-shared octahedral layers (BO6). The A-site cation is comprised of Pt, Pd, Ag, or Cu ions nominally in a monovalent state. The B-site cation can consist of most trivalent transition metals, group III elements, rare earths, or charge compensated pairs (e.g. B2+/B4+). This layered structure leads to highly anisotropic physical properties. The crystal chemistry of the delafossite structure will be discussed in reference to phase stability, the stability of dopants, and the important physical properties such as the conductivity and optical transparency.  相似文献   

9.
D. Paul Joseph 《Thin solid films》2009,517(21):6129-6867
Studies on spray deposited transparent conducting Li doped SnO2 thin films are scarce. Li (0 to 5 wt.%) doped SnO2 thin films spray deposited onto glass substrates at 773 K in air from chloride precursors were studied for their structural, optical and temperature dependent electrical behaviors. X-ray diffraction patterns indicated single phase with polycrystalline nature. Systematic variation in surface morphology on Li doping was examined by scanning electron microscopy and atomic force microscopy. Film thickness, optical band gap (direct and indirect), sheet resistance and figure of merit were computed from spectral transmittance and temperature dependent resistivity data. Lithium doping was found to decrease the value of sheet resistance by an order in magnitude. Activation energy was computed from temperature dependent electrical resistivity data measured in the range 300 to 448 K. The 4 wt.% Li doped SnO2 film was found to have a high value of figure of merit among other films. The results are discussed.  相似文献   

10.
Halina Czternastek 《Vacuum》2008,82(10):994-997
Al-doped ZnO films were prepared by the dc magnetron sputtering technique on Suprasil-1 substrates at a temperature of 470 K. Plasma-emission monitoring was used to stabilize oxygen flow to the deposition chamber. The effect of substrate position during deposition on the structural, electrical and optical properties of the films was investigated. It was found that preparation of low-resistance films with high optical transmission over the visible region is possible under condition of low plasma effects on the growing film.  相似文献   

11.
Ga-doped ZnO (GZO) films with a thickness of 100 nm were prepared on cyclo-olefin polymer (COP) and glass substrates at various temperatures below 100 °C by ion plating with direct-current arc discharge. The dependences of the characteristics of GZO films on the substrate temperature Ts were investigated. All the polycrystalline GZO films, which exhibited a high average visible transmittance of greater than 86%, were crystallized with a wurtzite structure oriented along the c-axis. The lowest resistivities of the GZO films were 5.3 × 10− 4 Ωcm on the glass substrate and 5.9 × 10− 4 Ωcm on the COP substrate.  相似文献   

12.
ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO (SnO2: 10 wt.%) target and CeO2 doped ITO (CeO2: 0.5, 3.0, 4.0 and 6.0 wt.%) ceramic targets, respectively, on unheated non-alkali glass substrates (corning E2000). The as-deposited films were annealed at 200 °C in an Ar atmosphere at a pressure of 1 Pa. The crystallization temperature of the ITO film was increased by introducing Ce atoms because they decrease the level of crystallinity. It was also confirmed that the etching rate, surface morphology and work function were improved by the addition of Ce atoms despite there being increased resistivity. The current voltage (I-V) characteristics of the OLED devices deteriorated with increasing Ce content in the ITO anode, which was attributed to a decrease in carrier density despite there being a high work function. Therefore, the carrier density is one of the most important factors that determine the turn-on voltage for OLED applications.  相似文献   

13.
利用溶胶-凝胶法在玻璃基板上制备了Al/Zn原子掺杂比例为0~0.25的掺铝氧化锌(ZnO∶Al或AZO)薄膜,随后分别将其在空气,氧气和氮气3种不同气氛中退火处理,研究了薄膜的光学、电学与结构方面的性质.X射线衍射分析表明AZO薄膜是具有c轴择优取向的六方纤锌矿结构多晶体;通过紫外-可见光分光计测定表明该薄膜在可见光范围内具有>80%的高透过率,随着铝掺杂比例的增大光学能隙增大且吸收边向短波方向移动.  相似文献   

14.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

15.
Current research on transparent conductive oxides (TCOs) is focusing on indium-free TCOs, such as Al-doped ZnO (AZO), as an alternative to indium-tin oxide. In this work, AZO thin films were grown by Pulsed Laser Deposition at room temperature in oxygen atmosphere. The O2 pressure was varied from 0.01 Pa to 10 Pa, highlighting the effects of defect formation and oxygen vacancies on the film properties. Structural properties were characterized by X-ray diffraction and Scanning Electron Microscopy, while functional properties were characterized by measurement of electrical conductivity, Hall mobility, carrier density and optical transmission. At an optimal deposition pressure of 2 Pa, optical transparency in the visible range and minimum resistivity (4.5 ? 10− 4 Ω cm) were found, comparable to state-of-the-art TCOs. Mean value of visible transparency was shown to increase with increasing pressure, up to 88% at a deposition pressure of 10 Pa.  相似文献   

16.
In this work we present a study on the effect of annealing temperatures on the structural, morphological, electrical and optical characteristics of gallium doped zinc oxide (GZO), indium zinc oxide (IZO) and indium-tin-oxide (ITO) films. GZO and IZO films were deposited at room temperature by r.f. magnetron sputtering, whereas the ITO films were commercial ones purchased from Balzers. All films were annealed at temperatures of 250 and 500 °C in open air for 1 h. The GZO and ITO films were polycrystalline. The amorphous structure of as-deposited IZO films becomes crystalline on high temperature annealing (500 °C). The sheet resistivity increased with increase in annealing temperature. GZO films showed an increase of 6 orders of magnitude. The optical transmittance and band gap of as-deposited films varied with annealing. The highest transmittance (over 95 %) and maximum band gap (3.93 eV) have been obtained for ITO films.  相似文献   

17.
We consider the effects of three different types of applied compressive stress on the structural, electronic and optical properties of rutile SnO2. We use standard density functional theory (DFT) to determine the structural parameters. The effective masses and the electronic band gap, as well as their stress derivatives, are computed within both DFT and many-body perturbation theory (MBPT). The stress derivatives for the SnO2 direct band gap are determined to be 62, 38 and 25 meV/GPa within MBPT for applied hydrostatic, biaxial and uniaxial stress, respectively. Compared to DFT, this is a clear improvement with respect to available experimental data. We also estimate the exciton binding energies and their stress coefficients and compute the absorption spectrum by solving the Bethe–Salpeter equation.  相似文献   

18.
C.H. Tseng  H.C. Chang  C.Y. Hsu 《Vacuum》2010,85(2):263-267
Transparent and conductive Al-doped (2 wt.%) zinc oxide (AZO) films were deposited on inexpensive soda-lime glass substrates by using rf magnetron sputtering at room temperature. This study analyzed the effects of argon sputtering pressure, which varied in the range from 0.46 to 2.0 Pa, on the morphological, electrical and optical properties of AZO films. The only (0 0 2) diffraction peak of the film were observed at 2θ~34.45°, exhibiting that the AZO films had hexagonal ZnO wurtzite structure, and a preferred orientation with the c-axis perpendicular to the substrate. By applying a very thin aluminum buffer layer with the thickness of 2 nm, findings show that the electrical resistivity was 9.46 × 10−4 Ω-cm, and the average optical transmittance in the visible part of the spectra was approximately 81%. Furthermore, as for 10 nm thick buffer layer, the electrical resistivity was lower, but the transmittance was decreased.  相似文献   

19.
In the paper the mechanical, optical and electrical parameters of transparent conductive layers (TCLs) made of carbon nanotubes and metal conductive oxides are explored and compared. All investigated materials are deposited on transparent, flexible polymer foils used for solar cell applications. Obtained results are compared with available parameters of rigid transparent conductive oxides (TCOs) as well as literature reports about Indium–Tin Oxide (ITO) on flexible substrates. Presented paper is a report from the preliminary stage of a new flexible solar cell construction.  相似文献   

20.
ZnO thin films, codoped with Al and Ga, were prepared on fused quartz (FQ) and cyclo-olefin polymer (COP) substrates using a radial frequency magnetron sputtering technique at room temperature, without the introducing of oxygen. The elemental distributions of Al, Ga, Zn and O throughout the films were found and no compositional variation in working pressure was observed. A resistivity of 0.03-4.07 Ω cm in AGZ/FQ films (Fig. 2b and 0.04-5.73 Ω cm in AGZ/COP films as well as a transmittance of above 85% were obtained by appropriate control of the working pressure. Compared with the band gap energy of single crystal ZnO, the band gap energy of the AGZ/FQ thin film was somewhat higher. The band gap energy of the AGZ/FQ films showed a tendency to increase with the working pressure employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号