首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Undoped and Pd-doped SnO2 films were deposited under various conditions for the investigation of the effect of Pd doping, porosity, and thickness on their H2 gas sensing properties. The temperature of the substrate and the pressure of the discharge gas were varied. All films formed were composed of columns with thicknesses between 20 and 30 nm. The film density decreased as the discharge gas pressure increased and the substrate temperature decreased. It showed values between 4.2×103 and 7.0×103 kg/m3 depending on the deposition condition. Low film density and Pd doping resulted in high sensitivity and fast response. The largest sensitivity was observed for a Pd-doped film with a low density of 4.7×103 kg/m3 and a thickness of 20 nm.  相似文献   

2.
Pure SnO2 films and Ag-, Cu-, Pt-, and Pd-doped SnO2 films were investigated for H2S sensing properties. SnO2 films were deposited by DC magnetron sputtering at various substrate temperatures and discharge gas pressures. As the discharge gas pressure increased and the substrate temperature decreased, the film became porous. Doping with Cu or Ag film improved the sensitivity, and the highest sensitivity was obtained in the porous SnO2 film coated with an Ag film 16 nm thick. According to the X-ray diffraction (XRD) pattern, Ag deposited on SnO2 film transformed to Ag2S upon exposure to H2S. When the Ag-doped film sensor was operated at a low temperature, the sensitivity was extremely high, but the recovery was insufficient. By increasing the operation temperature, the recovery was improved but the sensitivity decreased.  相似文献   

3.
WO3 thin films having different effective surface areas were deposited under various discharge gas pressures at room temperature by using reactive magnetron sputtering. The microstructure of WO3 thin films was investigated by X-ray diffraction, scanning electron microscopy, and by the measurement of physical adsorption isotherms. The effective surface area and pore volume of WO3 thin films increase with increasing discharge gas pressure from 0.4 to 12 Pa. Gas sensors based on WO3 thin films show reversible response to NO2 gas and H2 gas at an operating temperature of 50-300 °C. The peak sensitivity is found at 200 °C for NO2 gas and the peak sensitivity appears at 300 °C for H2 gas. For both kinds of detected gases, the sensor sensitivity increases linearly with an increase of effective surface area of WO3 thin films. The results demonstrate the importance of achieving high effective surface area on improving the gas sensing performance.  相似文献   

4.
Fast response detection of H2S by CuO-doped SnO2 films prepared was prepared by a simple two-step process: electrodeposition from aqueous solutions of SnCl2 and CuCl2, and oxidization at 600 °C. The phase constitution and morphology of the CuO-doped SnO2 films were characterized by X-ray diffraction and scanning electron microscopy. In all cases, a polycrystalline porous film of SnO2 was the product, with the CuO deposited on the individual SnO2 particles. Two types of CuO-doped SnO2 films with different microstructures were obtained via control of oxidation time: nanosized CuO dotted island doped SnO2 and ultra-uniform, porous, and thin CuO film coated SnO2. The sensor response of the CuO doped SnO2 films to H2S gas at 50–300 ppm was investigated within the temperature range of 25–125 °C. Both of the CuO-doped SnO2 films show fast response and recovery properties. The response time of the ultra-uniform, porous, and thin CuO coated SnO2 to H2S gas at 50 ppm was 34 s at 100 °C, and its corresponding recovery time was about 1/3 of the response time.  相似文献   

5.
Co-doped SnO2 thin films are grown on sapphire (0001) substrates at 600 °C by the technique of dual-beam pulsed laser deposition. The prepared films show preferred orientation in the [100] direction of the rutile structure of SnO2. Nonequilibrium film growth process results in doping Co into SnO2 much above the thermal equilibrium limit. A Film with 3% of Co is ferromagnetic at room temperature with a remanent magnetization of ∼ 26% and a coercivity of ∼ 9.0 mT. As Co doping content x increases, the optical band gap absorption edge (E0) of the Co-doped SnO2 thin films initially shows a redshift at low x up to x = 0.12 and then increases at the higher x, which are attributed to the sp-d exchange interactions and alloying effects, respectively.  相似文献   

6.
Tin sulfide (SnS) thin films have been prepared by spray pyrolysis (SP) technique using tin chloride and N, N-dimethylthiourea as precursor compounds. Thin films prepared at different temperatures have been characterized using several techniques. X-ray diffraction studies have shown that substrate temperature (Ts) affects the crystalline structure of the deposited material as well as the optoelectronic properties. The calculated optical band gap (Eg) value for films deposited at Ts = 320-396 °C was 1.70 eV (SnS). Additional phases of SnS2 at 455 °C and SnO2 at 488 °C were formed. The measured electrical resistivity value for SnS films was ∼ 1 × 104 Ω-cm.  相似文献   

7.
Tin-doped indium oxide (ITO) films were deposited at ∼ 70 °C of substrate temperature by radio frequency magnetron sputtering method using an In2O3-10% SnO2 target. The effect of hydrogen gas ratio [H2 / (H2 + Ar)] on the electrical, optical and mechanical properties was investigated. With increasing the amount of hydrogen gas, the resistivity of the samples showed the lowest value of 3.5 × 10− 4 Ω·cm at the range of 0.8-1.7% of hydrogen gas ratio, while the resistivity increases over than 2.5% of hydrogen gas ratio. Hall effect measurements explained that carrier concentration and its mobility are strongly related with the resistivity of ITO films. The supplement of hydrogen gas also reduced the residual stress of ITO films up to the stress level of 110 MPa. The surface roughness and the crystallinity of the samples were investigated by using atomic force microscopy and x-ray diffraction, respectively.  相似文献   

8.
Y. Hotta  H. Sugai 《Thin solid films》2007,515(12):4983-4987
Microcrystalline silicon (μc-Si) and polycrystalline silicon (poly-Si) films are deposited by surface wave (SW) discharge at 2.45 GHz in H2/SiH4 gas. This high density SW plasma at relatively low pressures (4-60 Pa) enables strong dissociation of feedstock gas. The films deposited on substrate are investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The SW discharge in 10% SiH4 at total pressure of ∼ 30 Pa gives μc-Si films on a substrate at 250 °C, at a fairly high deposition rate of 4-20 nm/s, with a crystalline volume fraction of 0.5-0.8 and a grain size of 10-40 nm. Furthermore, poly-Si film with crystalline volume fraction of > 99% is deposited at higher substrate temperature (400 °C) in 2% SiH4 discharge at lower pressure (4 Pa). X-ray diffraction and SEM results revealed that the grain size of poly-Si films is as large as 600 nm, which is almost 6 times larger than previously reported values.  相似文献   

9.
Pd-doped SnO2-core/ZnO-shell nanorods were synthesized by using a three-step process: thermal evaporation of Sn powders in an oxygen atmosphere, atomic layer deposition of ZnO, and Pd diffusion followed by annealing. The sensitivity of the multiple networked SnO2-core/ZnO-shell nanorod sensor to H2S gas was found to be improved further significantly by Pd doping. The Pd-doped SnO2-core/ZnO-shell nanorod sensor showed sensitivities of 6.4, 15.4, and 36.2% at H2S concentrations of 20, 50, and 100 ppm at room temperature. The sensitivity of the nanorods was improved by more than 10 times at a H2S concentration of 100 ppm. The sensitivity enhancement of the SnO2-core/ZnO-shell nanorods by Pd doping may be attributed to the spillover effect, active reaction site generation, and the enhancement of chemisorption and dissociation of gas.  相似文献   

10.
H2 additional effect for crystallization of SnO2 films prepared by the hot-wire CVD method was investigated. The crystallization of SnO2 films starts at 170 °C. The selectivity enhancement of the solar cell substrate will contribute to reduce the cost of silicon thin film solar cells. The atomic hydrogen assisted nano-crystallization exists for the depositions of SnO2 films by the hot-wire CVD method. Furthermore, the addition of H2 gas improved the electrical conductivity up to 5.3 × 100 S/cm. However, these effects are limited in the deposition condition of a small amount of hydrogen. Addition of much higher hydrogen concentration starts an etching effect of oxygen atoms.  相似文献   

11.
The paper investigates the gas response of nanocrystalline SnO2 based thick film sensors upon exposure to carbon monoxide (CO) in changing water vapour (H2O) and oxygen (O2) backgrounds. The sensing materials were undoped, Pt- and Pd-doped SnO2. We found that in the absence of oxygen, the sensor signal (defined as the ratio between the resistance in the background gas, R0 and the resistance in the presence of the target gases, R, namely R0/R) have the highest values. These values are higher for doped materials than for the undoped ones. The presence of humidity increases dramatically the sensor signal of the doped materials. In the presence of oxygen, the sensor signal decreases significantly for all sensor materials. The results indicate that there is a competitive adsorption between O2 and H2O related surface species and, as a result, different sensing mechanisms can be observed for CO.  相似文献   

12.
A study on the low-temperature CO gas sensors based on Au/SnO2 thick film was reported. Au/SnO2 powders, with different Au loading from 0.36 to 3.57 wt%, were prepared by a deposition-precipitation method. Thick films were fabricated from Au/SnO2 powders. The Au/SnO2 thick-film sensors exhibited high sensitivity to CO gas at relatively low operating temperature (83-210 °C). We also reported the effect of the Au loading in Au/SnO2 on the CO gas sensing behavior. The optimal Au loading in as-prepared Au/SnO2 was 2.86 wt%.  相似文献   

13.
Inverse spinel zinc stannate (Zn2SnO4, ZTO) films were deposited onto fused quartz glass substrates heated at 800 °C by rf magnetron sputtering using a ceramic ZTO target (Zn:Sn = 2:1). H2 flow ratios [H2/(Ar + H2)] were controlled from 0 to 30% during the depositions. ZTO films deposited at 800 °C possessed a polycrystalline inverse spinel structure. The lowest resistivity of 1.1 × 10− 2 Ω cm was obtained for a ZTO film deposited at 20% H2 flow ratio. The transmittance of the ZTO film was approximately 80% in the visible region.  相似文献   

14.
Atomic layer deposition (ALD) of ZnS films utilizing diethylzinc and in situ generated H2S was performed over a temperature range of 60 °C-400 °C. This method for generating H2S in situ was developed to eliminate the need to store high pressure H2S gas. The H2S precursor was generated by heating thioacetamide to 150 °C in an inert atmosphere, producing acetonitrile and H2S as confirmed with mass spectroscopy. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with X-ray diffraction, transmission electron microscopy, ellipsometry, atomic force microscopy, scanning electron microscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The results show a growth rate that monotonically decreases with temperature, and films that are stoichiometric in Zn and S. The root mean square roughness of the films increases with temperature above 100 °C. A change in crystal phase begins at ∼ 300 °C. The band gap is dependent on the crystal phase and is estimated to be 3.6-4 eV.  相似文献   

15.
We report the correlation of the aging of Pd-doped SnO2 methane sensors with the change of the oxidation state of Pd. Mesoporous SnO2 doped with palladium species was prepared and exposed to different gas mixtures at high temperature (600 °C) to simulate long term usage. After each exposure step a fraction of the sample was cooled down to “freeze” the current oxidation state of Pd which was then analyzed by X-ray Absorption Near-Edge Spectroscopy (XANES) using the 'white line' (i.e. the absorption peak corresponding to the transition from the 2p3/2 core level to unoccupied 4 d states) intensity of the L(III) edge as a probe for the oxidation state. The Pd oxidation state correlates with the response of the resistive SnO2 sensor to methane gas, as determined by measuring the gas response to different concentrations of methane. Samples treated with 5000 ppm methane in air show a significant reduction of Pd(II) to Pd(0), depending clearly on the carrier gas (synthetic air, pure nitrogen) and on the temperature (600 °C vs. 300 °C).  相似文献   

16.
Antimony sulfide thin films of thickness ≈ 500 nm have been deposited on glass slides from chemical baths constituted with SbCl3 and sodium thiosulfate. Smooth specularly reflective thin films are obtained at deposition temperatures from − 3 to 10 °C. The differences in the film thickness and improvement in the crystallinity and photoconductivity upon annealing the film in nitrogen are presented. These films can be partially converted into a solid solution of the type Sb2SxSe3 − x, detected in X-ray diffraction, through heating them in contact with a chemically deposited selenium thin film. This would decrease the optical band gap of the film from ≈ 1.7 eV (Sb2S3) to ≈ 1.3 eV for the films heated at 300 °C. Similarly, heating at 300 °C of sequentially deposited thin film layers of Sb2S3-Ag2Se, the latter also from a chemical bath at 10 °C results in the formation of AgSb(S/Se)2 with an optical gap of ≈ 1.2 eV. All these thin films have been integrated into photovoltaic structures using a CdS window layer deposited on 3 mm glass sheets with a SnO2:F coating (TEC-15, Pilkington). Characteristics obtained in these cells under an illumination of 850 W/m2 (tungsten halogen) are as follows: SnO2:F-CdS-Sb2S3-Ag(paint) with open circuit voltage (Voc) 470 mV and short circuit current density (Jsc) 0.02 mA/cm2; SnO2:F-CdS-Sb2S3-CuS-Ag(paint), Voc ≈ 460 mV and Jsc ≈ 0.4 mA/cm2; SnO2:F-CdS-Sb2SxSe3 − x-Ag(paint), Voc ≈ 670 mV and Jsc ≈ 0.05 mA/cm2; SnO2:F-CdS-Sb2S3-AgSb(S/Se)2-Ag(paint), Voc ≈ 450 mV and Jsc ≈ 1.4 mA/cm2. We consider that the materials and the deposition techniques reported here are promising toward developing ‘all-chemically deposited solar cell technologies.’  相似文献   

17.
P-type NiO thin films have been developed on high resistivity Si and SiO2 substrates by a pulsed laser deposition technique using an ArF? 193 nm excimer laser at deposition temperature of 300 °C and in 40 Pa partial oxygen pressure. Structures based on such NiO films as host material in the form of Au-NiO Schottky diodes have been subsequently developed under vacuum. In a different procedure, an n-SnO2 layer has been deposited by a CVD technique on a NiO film to produce a p/n heterojunction. The sensing properties of all above structures have been tested upon exposure to a H2 flow in air ambient gas at various operating temperature ranging from 30 to 180 °C. For the NiO films, the optimum temperature was about 150 °C exhibiting a sensitivity of 94%. After surface sensitization of NiO by Au the NiO films showed an H2 response at operating temperature of 30 °C. The sensitivity of p-NiO/n-SnO2 heterojunction devices was extracted from I-V measurements in air and under H2 flow mixed in air. In this case a dramatic increase of the sensitivity was achieved at operating temperature of 30 °C for a forward bias of 0,2 V.  相似文献   

18.
Chemical vapor deposition was used to deposit tungsten carbide from a mixture of WCl6, H2 and C3H8 at 750-1050 °C on silicon and carbon substrates. The phase composition of the films was correlated with substrate temperature, substrate position in the reactor, and total flow rates. X-ray diffraction and X-ray photoelectron spectroscopy were employed to investigate the surface and bulk properties of the thin films. Thick, adherent films of phase-rich hexagonal WC were deposited using 1.3 × 103 Pa total pressure, 1050 °C substrate temperature, and reactant flow rates of H2/C3H8/Ar/WCl6 = 1.8 × 10− 2/3.6 × 10− 3/8.9 × 10− 4/1.8 × 10− 4 mol/min, where Ar is the carrier gas. The surface composition was oxygen and carbon rich as compared with the bulk.  相似文献   

19.
The nanocomposite oxide (0.2TiO2-0.8SnO2) doped with Cd2+ powder have been prepared and characterized by XRD and their gas-sensing sensitivity were characterized using gas sensing measurement. Experimental results show that, bicomponent nano anatase TiO2 and rutile SnO2 particulate thick film doped with Cd2+ behaves with good sensitivity to formaldehyde gas of 200 ppm in the air, and the optimum sensing temperature was reduced from 360 °C to 320 °C compared with the undoped Cd2+ thick film. The gas sensing thick films doped with Cd2+ also show good selectivity to formaldehyde among benzene, toluene, xylene and ammonia as disturbed gas and could be effectively used as an indoor formaldehyde sensor.  相似文献   

20.
Hierarchically porous intestine-like SnO2 hollow nanostructures of different dimension were successfully synthesized via a facile, organic template free, H2O2-assisted method at room temperature. The morphology as well as texture (congregated solid sphere, intestine-like solid nanostructure, hollow core–shell one, and intestine-like hollow one) of SnO2 materials can be controlled by varying H2O2 concentration and the size of intestine-like hollow SnO2 can be tuned in the range of 20–120 nm by changing SnSO4 concentration. The hierarchically porous intestine-like SnO2 has high specific surface area (142 m2 g−1). The gas-sensing behaviors of the intestine-like SnO2 material to different gas probes such as ethanol, H2, CO, methane, and butane have been investigated; among them a high selectivity to ethanol was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号