共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-thin gallium nitride (GaN) films were deposited using the ion-beam assisted molecular-beam epitaxy technique. The influence of the nitrogen ion to gallium atom flux ratio (I/A ratio) during the early stages of GaN nucleation and thin film growth directly, without a buffer layer on super-polished 6H-SiC(0001) substrates was studied. The deposition process was performed at a constant substrate temperature of 700 °C by evaporation of Ga and irradiation with hyperthermal nitrogen ions from a constricted glow-discharge ion source. The hyperthermal nitrogen ion flux was kept constant and the kinetic energy of the ions did not exceed 25 eV. The selection of different I/A ratios in the range from 0.8 to 3.2 was done by varying the Ga deposition rate between 5 × 1013 and 2 × 1014 at. cm− 2 s− 1. The crystalline surface structure during the GaN growth was monitored in situ by reflection high-energy electron diffraction. The surface topography of the films as well as the morphology of separated GaN islands on the substrate surface was examined after film growth using a scanning tunneling microscope without interruption of ultra-high vacuum. The results show, that the I/A ratio has a major impact on the properties of the resulting ultra-thin GaN films. The growth mode, the surface roughness, the degree of GaN coverage of the substrate and the polytype mixture depend notably on the I/A ratio. 相似文献
2.
The growth of In onto W(1 1 0) was observed at room temperature by means of low-energy electron diffraction and photoemission from core levels and valence levels. Surface diffusion of In onto the W(1 1 0) surface was studied by using ESCA imaging property of SCIENTA ESCA200 instrument at the temperature range of 400-550 K. 相似文献
3.
Balakrishnam R. Jampana Conan R. WeilandRobert L. Opila Ian T. FergusonChristiana B. Honsberg 《Thin solid films》2012,520(22):6807-6812
We report the change in optical absorption properties of InGaN epilayers around the critical layer thickness determined from X-ray diffraction. Detrimental sub-band gap absorption is observed in InGaN thin films grown beyond the critical layer thicknesses, and is caused by localized electric fields around extended crystalline defects and aided by V-defects through light channeling. The photoluminescence response from InGaN thin films, grown beyond the critical layer thickness, is reduced owing to absorption of the incident laser light by non-radiative recombination extended crystalline defects. The formation of V-defects is observed to occur beyond the critical layer thickness and continues to grow in areal coverage aiding in sub-band gap absorption. This optical behavior sets constraints to be incorporated in the design of InGaN solar cell and requirement for improvement in epitaxial growth techniques to reduce V-defects. 相似文献
4.
P.P.-T. Chen J.E. DownesA.J. Fernandes K.S.A. ButcherM. Wintrebert-Fouquet R. WuhrerM.R. Phillips 《Thin solid films》2011,519(6):1831-1836
The nature of the apparent band-gap shift in polycrystalline indium nitride thin-films, grown by remote-plasma-enhanced chemical vapour deposition at 535 ± 10 °C, has been investigated separately in relation to growth temperature dependent crystallinity and chemical variation. Substrates of sapphire and gallium nitride on sapphire were used to study the effect of a stress-reduced template on indium nitride crystallite quality and apparent band-gap. To mimic surface growth temperature variations two glass substrates of differing thickness and thermal conductivity were intentionally used for the same growth conditions. The samples were characterised using optical transmission, scanning electron microscope, X-ray diffraction, and high-resolution X-ray photoelectron spectroscopy. The results indicate that the apparent band-gap shift in polycrystalline narrow band-gap indium nitride thin-films is not primarily determined by the quality of indium nitride crystallites but rather it is associated with growth temperature dependent chemical variations in the films. 相似文献
5.
The crystal orientation and residual stress of AlN thin films were investigated using X-ray diffraction and substrate curvature method. The AlN films were deposited on Si(100) by RF magnetron sputtering in a mixed plasma of argon and nitrogen under various substrate negative bias Vs (up to − 100 V) and deposition temperature Ts up to 800 °C. The results show that lower temperature and moderate bias favor the formation of (002) plane parallel to the substrate surface. On the contrary, strong biasing beyond − 75 V and deposition temperature higher than 400 °C lead to the growth of (100) plane. At the same time nanoindentation hardness and compressive stress measured by substrate curvature method showed significant enhancement with substrate bias and temperature. The biased samples develop compressive stress while unbiased samples exhibit tensile or compressive stress depending on plasma power and temperature. The relationships between deposition conditions and crystallographic orientation of the films are discussed in terms of surface energy minimization and ion bombardment effects. 相似文献
6.
Ki-Young SongR. Navamathavan Ji-Hyeon ParkYeom-Bo Ra Yong-Ho RaJin-Soo Kim Cheul-Ro Lee 《Thin solid films》2011,520(1):126-130
We report on the selective area growth of GaN nanowires (NWs) on nano-patterned Si(111) substrates by metalorganic chemical vapor deposition. The nano-patterns were fabricated by the oxidation of Si followed by the etching process of Au nano-droplets. The size of formed nano-pattern on Si(111) substrate was corresponding to the size of Au nano-droplet, and the diameter of GaN NWs grown was similar to the diameter of fabricated nano-pattern. The interesting phenomenon of using the nano-patterned Si(111) substrates is the formation of very clear substrate surface even after the growth of GaN NWs. However, in the case of GaN NWs grown using Au nano-droplets, there was several nanoparticles including GaN bulk grains on the Si(111) substrates. The smooth surface morphology of nano-patterned Si(111) substrates was attributed to the presence of SiO2 layer which prevents the formation of unnecessary GaN particles during the GaN NW growth. Therefore, we believe that nano-patterning method of Si(111) which was obtained by the oxidation of Si(111) substrate and subsequent Au etching process can be utilized to grow high-quality GaN NWs and its related nano-device applications. 相似文献
7.
Chae-Seon Hong 《Thin solid films》2006,515(3):957-960
ZnO thin films were deposited by a sol-gel process using zinc acetate dihydrate and 2-methoxyethanol as starting precursor and solvent, respectively. Ag-nanoparticles were prepared with uniform size (4.4 nm) by the spontaneous reduction method of Ag 2-ethylhexanoate in Dimethyl sulfoxide. The optical and electrical characteristics of ZnO films with the introduction of 3A metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles were evaluated. The optical and electrical properties of metal-doped ZnO films were improved and light scatter, charge emission and the scattering behavior of Ag-nanoparticles incorporated into the ZnO thin film were measured. The introduction of Ag-nanoparticles into metal-doped ZnO films induced a slight decrease in the optical transmittance but an increase in the electrical sheet resistance. 相似文献
8.
K.R. Balasubramanian Feroz A. Mohammad Paul A. Salvador Jeffrey DiMaio 《Thin solid films》2006,515(4):1807-1813
Epitaxial hexagonal YMnO3 (h-YMnO3) films having sharp (00l) X-ray diffraction peaks were grown above 700 °C in 5 mTorr O2 via pulsed laser deposition both on as-received wurtzite GaN/AlN/6H-SiC(001) (w-GaN) substrates as well as on w-GaN surfaces that were etched in 50% HF solution. High-resolution transmission electron microscopy revealed an interfacial layer between film and the unetched substrate; this layer was absent in those samples wherein an etched substrate was used. However, the substrate treatment did not affect the epitaxial arrangement between the h-YMnO3 film and w-GaN substrate. The epitaxial relationships of the h-YMnO3 films with the w-GaN(001) substrate was determined via X-ray diffraction to be (001)YMnO3 ‖ (001)GaN : [11¯0]YMnO3 ‖ [110]GaN; in other words, the basal planes of the film and the substrate are aligned parallel to one another, as are the most densely packed directions in planes of the film and the substrate. Interestingly, this arrangement has a larger lattice mismatch than if the principal axes of the unit cells were aligned. 相似文献
9.
The preparation of high quality epitaxial heterointerfaces of lattice mismatched dissimilar materials is one of the challenging tasks for advanced semiconductor devices. We have used the concept of van der Waals epitaxy, namely the deposition of two-dimensional layered materials like GaSe onto properly terminated three-dimensional substrates to prepare new heterointerfaces on Si of different surface orientation. Film growth and properties were investigated in situ by low-energy electron diffraction (LEED) and soft X-ray photoemission (SXPS) using integrated UHV preparation and analysis chambers. On Si(111) a hexagonal GaSe epitaxial layer grows on top of a preformed Si–Ga–Se van der Waals-like termination layer. A distorted Si–Ga–Se layer is also formed on Si(110), which evidently leads to an hexagonal surface mesh as substrate for further growth of crystalline GaSe. On Si(100), two domains of azimuthally aligned GaSe(0001) films are deposited. The usually given constraints in lattice mismatch, and even of different surface symmetry, can evidently be overcome by the use of van der Waals-like surface termination layers of the substrates. Thus, novel device structures combining compound semiconductors with Si seem to be feasible. 相似文献
10.
Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process 总被引:1,自引:0,他引:1
Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0. 相似文献
11.
We have studied the surface termination of ZnO(0001¯) films grown on Al2O3 substrates with high epitaxial quality. The structural properties of the ZnO films were investigated by X-ray scattering, revealing a predominant (0001¯)ZnO out-of-plane texture with the [112¯0]ZnO[0001]Al2O3 and [112¯0]ZnO[101¯0]Al2O3 azimuthal orientations for (112¯0)Al2O3 and(0001)Al2O3 substrates, respectively. The surface termination was determined by X-ray photoemission spectroscopy (XPS) via pyridine (C5H5N) adsorption at the ZnO surface. XPS data recorded at different temperatures after exposure to pyridine revealed that for both orientations of the Al2O3 substrates the deposited ZnO films were terminated by oxygen atoms, i.e. corresponding to a ZnO (0001¯) surface. 相似文献
12.
The X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and CO titration has been used to detect common impurities like carbon and sulphur on Pd(111) and Pt(111) surfaces. Different experimental problems are discussed and practical tips for the cleaning of Pd(111) and Pt(111) are given. A mechanism for the carbon oxidation on closed packed platinum group metals like Pt(111) and Pd(111) is presented. The bulk carbon concentration of Pd(111) was estimated based on the Langmuir-McLean theorem. Additionally it was shown that the titration with CO and subsequent XPS measurement is a powerful yet convenient method for quantitative detection of impurities and ceria coverage determination. A CeOx/Pd(111) inverse model system was prepared by evaporation of cerium in an oxygen atmosphere. The comparative study has shown that sulphur contamination changes the redox properties of the CeOx in the CeOx/Pd(111) system. 相似文献
13.
The energies of various steps on the As-terminated GaAs(001)-2 × 4 surface are evaluated using a novel, approximate method of “linear combination of structural motifs”. It is based on the observation that previous total energy minimizations of semiconductor surfaces produced invariably equilibrium structures made of the same recurring local structural motifs, e.g. tetrahedral fourfold Ga, pyramidal threefold As, etc. Furthermore, such surface structures were found to obey consistently the octet rules as applied to the local motifs. We thus express the total energy of a given semiconductor surface as a sum of (i) the energies M of the local structural motifs appearing in the surface under consideration and (ii) an electrostatic term representing the Madelung energy of point charges resulting from application of the octet rule. The motif energies are derived from a set of pseudopotential total energy calculations for flat GaAs(001) surfaces and for point defects in bulk GaAs. This set of parameters suffices to reproduce the energies of other (001) surfaces, calculated using the same pseudopotential total energy approach. Application to GaAs(001)-2 × 4 surfaces with steps reveals the following. (i) “Primitive steps”, defined solely according to their geometries (i.e. step heights, widths and orientations) are often unstable. (ii) Additional, non-geometric factors beyond step geometries such as addition of surface adatoms, creation of vacancies and atomic rebonding at step edges are important to lower step energies. So is step-step interaction. (iii) The formation of steps is generally endothermic. (iv) The formation of steps with edges parallel to the direction of surface As dimers (A steps) is energetically favored over the formation of steps whose edges are perpendicular to the As dimers (B steps). 相似文献
14.
We present a carrier transport study on low indium content (0.064 ≤ x ≤ 0.140) InxAl1 − xN/AlN/GaN/AlN heterostructures. Experimental Hall data were carried out as a function of temperature (33-300 K) and a magnetic field (0-1.4 T). A two-dimensional electron gas (2DEG) with single or double subbands and a two-dimensional hole gas were extracted after implementing quantitative mobility spectrum analysis on the magnetic field dependent Hall data. The mobility of the lowest subband of 2DEG was found to be lower than the mobility of the second subband. This behavior is explained by way of interface related scattering mechanisms, and the results are supported with a one-dimensional self-consistent solution of non-linear Schrödinger-Poisson equations. 相似文献
15.
The consumption of the surface native oxides is studied during the atomic layer deposition of TiO2 films on GaAs (100) surfaces. Films are deposited at 200 °C from tetrakis dimethyl amido titanium and H2O. Transmission electron microscopy data show that the starting surface consists of ~2.6 nm of native oxide and X-ray photoelectron spectroscopy indicates a gradual reduction in the thickness of the oxide layer as the thickness of the TiO2 film increases. Approximately 0.1-0.2 nm of arsenic and gallium suboxide is detected at the interface after 250 process cycles. For depositions on etched GaAs surfaces no interfacial oxidation is observed. 相似文献
16.
Amorphous dihalonaphthalenes that are prepared by vacuum deposition onto a cold Al2O3 surface form electronically excited dimers when optically pumped, and their emission is characteristically red-shifted, broad and featureless compared to the monomeric fluorescence. If the surface is heated, the adlayer undergoes a disorder-to-order transition at a temperature characteristic of the molecule. Since pure crystalline dihalonaphthalenes typically fluoresce and do not exhibit excimeric features, the transition was studied by taking advantage of the changes in the spectral characteristics of the adlayer. These included transmittance, and emission from fluorescence and excimer. The combination of these methods allowed a close look at the surface dynamics of molecules on the surface of Al2O3 as the adlayer was heated from the deposition temperature to desorption.If a bilayer is formed by depositing water onto the surface with the organic adlayer on top, water, with its lower desorption energy, can be made to percolate into the organic layer. The optical probes indicate that the water clearly associates with the organic molecules while the excess water desorbs. By varying the coverage of either the water or the dihalonaphthalene, the stoichiometric composition of the cluster can be determined and are reported here. 相似文献
17.
The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers. 相似文献
18.
Samuel Margueron Solène Ropers Alban Maertens Ouarda Legrani Frédéric Genty Ausrine Bartasyte Thierry Belmonte 《Materials Chemistry and Physics》2014
Photoluminescence of (0001) epitaxial ZnO films with thicknesses of 10, 30 and 100 nm on C-sapphire substrates have been studied at room temperature and after exposure to Ar, Ar–O2, Ar–N2 and Ar–H by remote microwave and radiofrequency plasmas. The photoluminescence are not modified by remote plasma treatments where only neutral species were involved. On the contrary, the photoluminescence signal is enhanced or quenched after radiofrequency plasma treatments when energetic ion species are involved in the surface treatment processes. Little changes of electric properties are observed, however, the optical transmission indicates that the absorption edge and probably also the index of refraction are affected. Photoluminescence peak shifts, widths and intensities changes show very strong similarities with polarized emission of ZnO single crystal where it exists a strong dichroism. The photoluminescence emission properties may then result from this optical modification. However, the plasma treatments on the different samples show very low stability in time, except, for the treatment in argon plasma alone. In this later case, in-situ monitoring of photoluminescence as a function of temperature revealed a partial recovery of the photoluminescence properties after a heat treatment at 400 °C for few minutes. These results indicate that photoluminescence of (0001) ZnO thin film, related to σ-emission polarized emission from c-axis polar surfaces, is highly affected by surface and implanted charged species. 相似文献
19.
E. Cappelli D.M. TrucchiS. Kaciulis S. OrlandoA. Zanza A. Mezzi 《Thin solid films》2011,519(12):4059-4063
The effect of deposition temperature and nitrogen inclusion in amorphous carbon (a-C) films, deposited by plasma enhanced pulsed laser deposition, on chemical composition and electronic transport has been studied. a-CNx films were deposited on Si (100) by pulsed ArF laser ablation of a graphite target, under N2 atmosphere. A radiofrequency (13.56 MHz RF) apparatus was used to generate plasma of excited nitrogen species, and its effect on nitrogen uptake and CNx film formation has been studied. Chemical and micro-structural changes associated to increased deposition temperature and nitrogen incorporation were examined by x-ray photoelectron spectroscopy; electrical properties were analyzed by the four-point-probe methods. Temperature-dependent conductivity measurements are tentatively interpreted and discussed in reference to chemical composition. 相似文献
20.
A. Bourlange R.G. Palgrave R.G. Egdell R.M.J. Jacobs J.L. Hutchison 《Thin solid films》2009,517(15):4286-4294
Thin films of In2O3 have been grown on Y-stabilised ZrO2(100) substrates by oxygen plasma assisted molecular beam epitaxy over a range of substrate temperatures between 650 °C and 900 °C. Growth at 650 °C leads to continuous but granular films and complete extinction of substrate core level structure in X-ray photoelectron spectroscopy. However with increasing substrate temperature the films break up into a series of discrete micrometer sized islands. Both the continuous and the island films have excellent epitaxial relationship with the substrate as gauged by X-ray diffraction and selected area electron diffraction and lattice imaging in high resolution transmission electron microscopy. 相似文献