首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Stoichiometric compound of copper indium diselenide (CuInSe2) was synthesized by direct reaction of high-purity elemental copper, indium and selenium in an evacuated quartz ampoule. The phase structure and composition of the synthesized pulverized material analyzed by X-ray diffraction (XRD) and energy dispersive analysis of X-rays (EDAX) revealed the chalcopyrite structure and stoichiometry of elements. Thin films of CuInSe2 were deposited onto organically cleaned soda lime glass substrates held at different temperatures (i.e. 300 K to 573 K) using thermal evaporation technique. CuInSe2 thin films were then thermally annealed in a vacuum chamber at 573 K at a base pressure of 10− 2 mbar for 1 h. The effect of substrate temperature (Ts) and thermal annealing (Ta) on structural, compositional, morphological, optical and electrical properties of films were investigated using XRD, transmission electron microscopy, EDAX, atomic force microscopy (AFM), optical transmission measurements and Hall effect techniques. XRD and EDAX studies of CuInSe2 thin films revealed that the films deposited in the substrate temperature range of 423-573 K have preferred orientation of grains along the (112) plane and near stoichiometric composition. AFM analysis indicates that the grain size increases with increase of Ts and Ta. Optical and electrical characterizations of films suggest that CuInSe2 thin films have high absorption coefficient (104 cm− 1) and resistivity value in the interval 10− 2-101 Ω cm influenced by Ts and Ta.  相似文献   

2.
Al2O3/Al films (period thickness Λ=20, 40 nm) were deposited onto (1 0 0) silicon substrate by reactive r.f. sputtering for substrate temperatures (Ts) ranging from −90 to 600 °C. Secondary ion mass spectrometry demonstrated the deposition of Al2O3/Al stratified thin films with the generation of periodic signals. X-ray reflectometry confirmed the periodicity with the presence of Bragg peaks in the experimental patterns. Nevertheless, the multilayered character of Al2O3/Al films is less and less pronounced as Ts increases. At low Ts, the relevant parameter to account for the absence of abrupt interfaces is the roughness of layers due to the aluminium layers, while at high Ts, the chemical interdiffusion clearly dominates.  相似文献   

3.
We report on observations of structural stability of Sn-doped In2O3 (ITO) thin films during thermal annealing at low temperature. The ITO thin films were deposited by radio-frequency magnetron sputtering at room temperature. Transmission electron microscopy analysis revealed that the as-deposited ITO thin films are nanocrystalline. After thermal annealing in a He atmosphere at 250 °C for 30 min, recrystallization, coalescence, and agglomeration of grains were observed. We further found that nanovoids formed in the annealed ITO thin films. The majority of the nanovoids are distributed along the locations of the original grain boundaries. These nanovoids divide the agglomerated larger grains into small coherent domains.  相似文献   

4.
Cadmium telluride (CdTe) thin films deposited by pulsed laser deposition (PLD) on fluorine–tin–oxide substrates under different pressures of argon (Ar) + oxygen (O2) at high substrate temperature (Ts = 500 °C) was reported in this paper. In our work, the CdTe thin films were prepared successfully at high Ts by inputting Ar + O2. As reported, PLD-CdTe thin films were almost prepared at low substrate temperatures (<300 °C) under vacuum conditions. The deposition of CdTe thin films at high Ts by PLD is rarely reported. The influence of the Ar + O2 gas pressure on thickness, structural performance, surface morphology, optical property and band gap (Eg) had been investigated respectively by Ambios probe level meter, X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Vis spectrometer. Strong dependence of properties on the deposition pressures was revealed. In the range of Ar + O2 gas pressure from 5 to 12 Torr, the deposition rate and the Eg of CdTe films vary in the range of 41.9–57.66 nm/min then to 35.26 nm/min and 1.51–1.54 eV then to 1.47 eV, respectively. The XRD diagrams showed that the as-deposited films were polycrystalline, and the main phase was cubic phase. However, the preferred orientation peak disappeared when the deposition pressure was higher. SEM images indicated that the CdTe film deposited at a higher deposition pressure was more uniform and had a higher compactness and a lower pinhole density. Furthermore, based on this thorough study, FTO/PLD-CdS (100 nm)/PLD-CdTe (~1.5 μm)/HgTe:Cu/Ag solar cells with an efficiency of 6.68 % and an area of 0.64 mm2 were prepared successfully.  相似文献   

5.
We report the structural and optical properties of nanocrystalline thin films of vanadium oxide prepared via evaporation technique on amorphous glass substrates. The crystallinity of the films was studied using X-ray diffraction and surface morphology of the films was studied using scanning electron microscopy and atomic force microscopy. Deposition temperature was found to have a great impact on the optical and structural properties of these films. The films deposited at room temperature show homogeneous, uniform and smooth texture but were amorphous in nature. These films remain amorphous even after postannealing at 300 °C. On the other hand the films deposited at substrate temperature TS > 200 °C were well textured and c-axis oriented with good crystalline properties. Moreover colour of the films changes from pale yellow to light brown to black corresponding to deposition at room temperature, 300 °C and 500 °C respectively. The investigation revealed that nanocrystalline V2O5 films with preferred 001 orientation and with crystalline size of 17.67 nm can be grown with a layered structure onto amorphous glass substrates at temperature as low as 300 °C. The photograph of V2O5 films deposited at room temperature taken by scanning electron microscopy shows regular dot like features of nm size.  相似文献   

6.
Indium tin oxide (ITO) thin films were deposited on glass substrates by ion beam sputter deposition method in three different deposition conditions [(i) oxygen (O2) flow rate varied from 0.05 to 0.20 sccm at a fixed argon (1.65 sccm) flow rate, (ii) Ar flow rate changed from 1.00 to 1.65 sccm at a fixed O2 (0.05 sccm) flow rate, and (iii) the variable parameter was the deposition time at fixed Ar (1.65 sccm) and O2 (0.05 sccm) flow rates]. (i) The X-ray diffraction (XRD) patterns show that the ITO films have a preferred orientation along (400) plane; the orientation of ITO film changes from (400) to (222) direction as the O2 flow rate is increased from 0.05 to 0.20 sccm. The optical transmittance in the visible region increases with increasing O2 flow rate. The sheet resistance (Rs) of ITO films also increases with increasing O2 flow rate; it is attributed to the decrease of oxygen vacancies in the ITO film. (ii) The XRD patterns show that the ITO film has a strong preferred orientation along (222) direction. The optical transmittance in the visible spectral region increases with an increase in Ar flow rate. The Rs of ITO films increases with increasing Ar flow rate; it is attributed to the decrease of grain size in the films. (iii) A change in the preferred orientations of ITO films from (400) to (222) was observed with increasing film thickness from 314 to 661 nm. The optical transmittance in the visible spectral region increases after annealing at 200 °C. The Rs of ITO film decreases with the increase of film thickness.  相似文献   

7.
Non-crystalline copper indium disulphide (CuInS2) thin films had been deposited on ITO glass by chemical bath deposition (CBD) in acid conditions. Then polycrystalline CuInS2 films were obtained after sulfuration in sulfur atmosphere at 450 °C for 1.5 h. The films had been characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering measurements and energy dispersive X-ray analysis (EDX). The optical and electrical property of the thin films was also measured. The results showed that the pure, flatness, and well crystallized CuInS2 thin films with good electrical and optical property had been obtained, meaning that the chemical bath deposition in acid conditions is suitable for the deposition of CuInS2 thin films.  相似文献   

8.
Transparent conductive oxide (TCO) thin films of Mo-doped In2O3 (IMO) were prepared on glass substrates by radio frequency magnetron sputtering from the 2 wt% Mo-doped In2O3 ceramic target. The depositions were carried out under an oxygen-argon atmosphere by varying the deposition temperature from 200 °C to 350 °C. The crystal structure and thickness of IMO thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of deposition temperature on the electrical and optical transmittance properties of IMO thin films were investigated by four-point probe Hall system and UV-VIS-NIR spectrophotometer separately. The optimum deposited IMO thin films were obtained with resistivity of 6.9 × 10−4 Ω cm and carrier mobility 45 cm2v−1s−1 at 350 °C. The average optical transmittance of IMO films on glass substrates are over 80% in the near-infrared region.  相似文献   

9.
C. Araújo  M. Aguiar 《Vacuum》2008,82(12):1437-1440
Cobalt ferrite (CoFe2O4) thin films have been deposited on Si (001) substrates, with different substrate temperatures (Tdep = 25 °C − 600 °C). The films were prepared by pulsed laser ablation with a KrF excimer laser (wavelength λ = 248 nm). The oxygen pressure during deposition was 2 × 10−2 mbar. The films structure was studied by X-ray diffraction (XRD) and their surface was examined by scanning electron microscopy (SEM). The magnetic properties were measured with a vibrating sample magnetometer (VSM). For low deposition temperatures, the films presented a mixture of a CoFe2O4 phase, with the cubic spinel structure, and cobalt and iron antiferromagnet oxides with CoO and FeO stoichiometries. As the deposition temperature increased, the CoO and FeO relative content strongly decreased, so that for Tdep = 600 °C the films were composed mainly by polycrystalline CoFe2O4. The magnetic hysteresis cycles measured in the films were horizontally shifted due to an exchange coupling field (Hexch) originated by the presence of the antiferromagnetic phases. The exchange field decreased with increasing deposition temperature, and was accompanied by a corresponding increase of the coercivity and remanence ratio of the cycles. This behavior was due to the strong reduction of the CoO and FeO content, and to the corresponding dominance of the CoFe2O4 phase on the magnetic properties of the thin films.  相似文献   

10.
《Materials Letters》2003,57(24-25):3820-3825
V2O5 films were deposited on silicon (111) substrates by vacuum evaporation technique at various deposition temperatures of 300, 473, 573, 623 and 673 K. X-ray characterization revealed that the films deposited at Ts≤473 K are amorphous and the film deposited at Ts≥573 K is polycrystalline. It is interesting to note that the film deposited at Ts=573 K is strongly oriented with (001) planes parallel to the substrate and the degree of preferred orientation towards (001) planes found to decrease with further increase in the deposition temperature. The influence of deposition temperature on the growth of the V2O5 films has been studied by Raman scattering spectroscopy. The films deposited on the silicon substrates maintained at 573 K are found to have better structural quality.  相似文献   

11.
《Thin solid films》2002,402(1-2):126-130
Thin films of tungsten oxide were grown by organometallic chemical vapor deposition (OMCVD) using tetra(allyl)tungsten, W(η3-C3H5)4. X-Ray diffraction (XRD) analyses showed amorphous films at substrate temperatures (Ts) <350°C and polycrystalline films at Ts>350°C. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed grain sizes in the range 20–40 nm. In situ electrochemical reduction of WO3.2/ITO (2.0 M HCl) produced a faint blue color in less than 1 s. The maximum coloration efficiency (CE) was found to be 22 cm2/mC at 630 nm. The density of the films decreases from 4.53 to 4.29 g/cm3 after annealing. An optical bandgap (Eg) of ∼3.2 eV was estimated for both as-deposited and annealed films.  相似文献   

12.
Titanium dioxide (TiO2) thin films were deposited on indium tin oxide (ITO) coated glass substrates by a liquid phase deposition method using two different precursor concentrations of 0.01 M and 0.005 M [NH4]2TiF6. Characterizations of the deposited TiO2 films were performed by using different spectroscopic techniques including X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. From scanning electron microscopy observation, the surface of the TiO2 films show a ricelike morphology. We have fabricated polymer-based photovoltaic cells (PCs) using the studied TiO2 films and compared their performances to those using bare ITO-coated glass substrates. The structure of the PCs is glass/ITO/TiO2/PCBM:P3HT/Au where PCBM:P3HT is poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester. The power conversion efficiency of these devices is determined to be 0.85%, which is higher than that of similar devices without TiO2 films (0.13%).  相似文献   

13.
Structures, varistor properties, and electrical stability of ZnO thin films   总被引:1,自引:0,他引:1  
Hui Lu  Yuele Wang  Xian Lin 《Materials Letters》2009,63(27):2321-2323
In this letter, we report the structures, varistor properties, and electrical stability of ZnO thin films deposited by the gas discharge activated reaction evaporation (GDARE) technique. The X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements showed that the thin films thus prepared have polycrystalline structures with the preferred orientation along the (002) plane whose surface consists of ZnO aggregates with sizes of 50-200 nm. The ZnO thin films deposited by GDARE and annealed at 250 °C for 2 h have strong nonlinear varistor-type I-V characteristics. The nonlinear coefficient (α) of a single-layered ZnO thin film sample was 33 and that of a triple-layered sample obtained by the many-time deposition was 62. The varistor voltages (V1mA) of the two samples are found rather close each other. Under a DC bias of 0.75 V1mA and a temperature of 150 °C these thin films exhibit good electrical stability with a degradation rate coefficient KT of 0.05 mA/h1/2.  相似文献   

14.
The growth, structure and room temperature electrical conductivity of electron beam evaporated V2O5 thin films were studied in detail as a function of deposition temperature. The films deposited at Ts≈553 K and subsequently annealed in oxygen atmosphere at 693 K exhibited orthorhombic layered structure.  相似文献   

15.
Tin sulfide (SnS) thin films have been prepared by spray pyrolysis (SP) technique using tin chloride and N, N-dimethylthiourea as precursor compounds. Thin films prepared at different temperatures have been characterized using several techniques. X-ray diffraction studies have shown that substrate temperature (Ts) affects the crystalline structure of the deposited material as well as the optoelectronic properties. The calculated optical band gap (Eg) value for films deposited at Ts = 320-396 °C was 1.70 eV (SnS). Additional phases of SnS2 at 455 °C and SnO2 at 488 °C were formed. The measured electrical resistivity value for SnS films was ∼ 1 × 104 Ω-cm.  相似文献   

16.
Highly transparent, conductive Sn-doped In2O3 (ITO) thin films with a characteristic root mean square surface roughness RMS below 1 nm were obtained from deposition of amorphous ITO and subsequent annealing treatment. ITO thin films with ultra flat surface were produced by (i) controlling crystallization mechanisms (nucleation and growth) of amorphous ITO through optimization of hydrogen content and temperature profile during sputtering and annealing process and (ii) preventing formation of agglomerated atoms/clusters in the gas phase and hence reducing large surface particles through fine tuning the sputtering rate and process pressure. Characterization of the coatings revealed specific resistivities below 2.5 × 10− 4 Ω cm and transparencies above 90% in the visible range of light.  相似文献   

17.
Ytterbium-doped Bi4Ti3O12 (Bi3.4Yb0.6Ti3O12, BYT) ferroelectric thin films were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition (CSD). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to identify the crystal structure, the surface and cross-section morphology of the deposited ferroelectric films. Structure evolution and ferroelectric properties of the as-prepared thin films annealed under different temperatures (600 °C-750 °C) were studied in detail. Additionally, the mechanism concerning the dependence of electrical properties of the BYT ferroelectric thin films on the annealing temperature was discussed.  相似文献   

18.
In this work the influence of the deposition conditions on the structural, electrical and optical properties of the ITO films was studied. Films were deposited by r.f. plasma sputtering technique in Ar and varying Ar + O2 gas mixtures, with and without substrate heating.Transmittance and reflectance of the films were measured in the range 350-2500 nm; the refractive index (n) and the extinction coefficient (k) were calculated by the spectral data simulation. The sheet resistance of the films was measured by four-point probe method. X-ray diffraction analysis was performed to study the texture of the films. Threshold behaviour was observed in the optical and electrical properties of ITO films deposited in Ar + O2 atmosphere at a certain oxygen concentration determined by a fix combination of all other deposition conditions. A schematic diagram for the change of the film properties versus composition was suggested, which explains the obtained results.  相似文献   

19.
Shailja Tiwari 《Thin solid films》2009,517(11):3253-3256
Magnetite (Fe3O4) thin films are prepared by pulsed laser deposition using an α-Fe2O3 target on silicon (111) substrate in the substrate temperature range of 350 °C to 550 °C. X-ray diffraction (XRD) measurement shows that the film deposited at 450 °C is a single phase Fe3O4 film oriented along [111] direction. However, the film grown at 350 °C reveals mixed oxide phases (FeO and Fe3O4), while the film deposited at 550 °C is a polycrystalline Fe3O4. X-ray photoelectron spectroscopy study confirms the XRD findings. Raman measurements reveal identical spectra for all the films deposited at different substrate temperatures. We observe abrupt increase in the resistivity behavior of all the films around Verwey transition temperature (TV) (125 K-120 K) though the transition is broader in the film deposited at 350 °C. We observe that the optimized temperature for the growth of Fe3O4 film on Si is 450 °C. The electrical transport behavior follows Shklovskii and Efros variable range hopping type conduction mechanism below TV for the film deposited at 450 °C possibly due to the granular growth of the film.  相似文献   

20.
Copper oxide thin films were deposited onto glass substrates by reactive radio frequency magnetron sputtering at various oxygen percentage flow rates R(O2). X-ray diffraction analysis revealed that nanocrystallite copper oxide thin films with cubic, tetragonal, and monoclinic structure were formed at R(O2) values of 10%, 20%, and ≥30%, respectively. Energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy were used to verify the copper oxides phases. With increased R(O2), the root mean square surface roughness of the deposited films decreased from 4.82 nm to 1.78 nm. Moreover, both the band gap type and value changed with increased R(O2). For R(O2) at 20%, single phase tetragonal Cu4O3 thin film with a direct band gap of 2.20 eV was formed. For R(O2) ≥ 30%, single phase monoclinic CuO thin films with an indirect band gap of 1.20 eV–1.25 eV were formed. In addition, conductive copper oxide thin films tended to form for R(O2) < 30%, whereas insulator oxide thin films tended to form for R(O2) ≥ 30%. Through this study, the crystallization behavior, the band gap, and the resistivity properties of the deposited copper oxide thin films as a function of the R(O2) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号