首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation in performance of proton-exchange membrane fuel cells (PEMFCs) under open circuit conditions was investigated. The oxygen reduction reaction (ORR) kinetic current density at 0.9 V was found to decrease from 36 to 4 mA cm−2 (geometric) without significant crossover increase or loss in the electrochemically active surface area. Cyclic voltammograms for the electrodes show characteristic changes, e.g. appearance of peaks at ∼0.2 V and shift of the onset of platinum oxide formation to higher potentials. It was identified that the large ORR kinetic decay has its origins in the reduction of available Pt sites due to adsorption of anions, which are postulated to be membrane decomposition products such as sulfate ions. Procedures carried out to condense water in the fuel cell led to the expulsion of anions out of the membrane electrode assembly (MEA) resulting in the partial recovery of ORR kinetic current density to 15 mA cm−2. In order to attain complete performance recovery of the catalyst, a more effective and practical method to flush out the anions is desirable.  相似文献   

2.
The study uses linear sweep voltametry (LSV) to observe the efficiency of oxygen reduction on some oxides and their mixtures in 6 M KOH at 25 °C. The investigated materials are Ag2O, MnO2, Sm2O3, Dy2O3 and NdO2. The electrocatalytic oxygen reduction reactions (ORR) on Teflon-bonded, oxide + graphite electrodes are studied. The oxygen reduction potentials for electrodes containing these materials as catalyst are seen as −60.67, −270.31, −111, −159.58 and −130.24 mV, respectively. Mixture combinations of these oxides give a higher ORR peak current thereby showing evidence of synergetic effect. Air–MH cells using some of the above investigated oxides as catalyst for air electrode are constructed and studied. Best performance is obtained with silver oxide. The LSV findings are in accordance with air–MH cell charge/discharge experiments and for best performance prefer shift of the ORR onset potential to more positive positions.  相似文献   

3.
A single alkaline direct ethanol fuel cell (alkaline DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts is designed, fabricated, and tested. Particular attention is paid to investigating the effects of different operating parameters, including the cell operating temperature, concentrations of both ethanol and the added electrolyte (KOH) solution, as well as the mass flow rates of the reactants. The alkaline DEFC yields a maximum power density of 60 mW cm−2, a limiting current density of about 550 mA cm−2, and an open-circuit voltage of about 900 mV at 40 °C. The experimental results show that the cell performance is improved on increasing the operating temperature, but there exists an optimum ethanol concentration under which the fuel cell has the best performance. In addition, cell performance increases monotonically with increasing KOH concentration in the region of low current density, while in the region of high current density, there exists an optimum KOH concentration in terms of cell performance. The effect of flow rate of the fuel solution is negligible when the ethanol concentration is higher than 1.0 M, although the cell performance improves on increasing the oxygen flow rate.  相似文献   

4.
Non-precious metal catalysts (NPMCs) synthesized from the precursors of carbon, nitrogen, and transition metals were investigated as an alternate cathode catalyst for alkaline fuel cells (AFCs). The procedures to synthesize the catalyst and the post-treatment were tailored to refine its electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline electrolyte. The results indicated that the performance of NPMCs prepared with carbon-supported ethylenediamine-transition metal composite precursor and subjected to heat-treatment shows comparable activity for oxygen reduction with Pt/C catalyst. The NPMC exhibits an open circuit potential of 0.97 V and a maximum power density of 177 mW cm−2 at 50 °C when tested in anion exchange membrane (AEM) fuel cells.  相似文献   

5.
A Pt/WC/C catalyst is developed to increase the methanol electro-oxidation (MOR) and oxygen electro-reduction (ORR) activities of the Pt/C catalyst. Cyclic voltammetry and CO stripping results show that spill-over of H+ occurs in Pt/WC/C, and this is confirmed by comparing the desorption area values for H+ and CO. A significant reduction in the potential of the CO electro-oxidation peak from 0.81 V for Pt/C to 0.68 V for Pt/WC/C is observed in CO stripping test results. This indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support with WC. Preferential deposition of Pt on WC rather than on the carbon support is investigated by complementary analysis of CO stripping, transmission electron microscopy and concentration mapping by energy dispersive spectroscopy. The Pt/WC/C catalyst exhibits a specific activity of 170 mA m−2 for MOR. This is 42% higher than that for the Pt/C catalyst, viz., 120 mA m−2. The Pt/WC/C catalyst also exhibits a much higher current density for ORR, i.e., 0.87 mA cm−2 compared with 0.36 mA cm−2 for Pt/C at 0.7 V. In the presence of methanol, the Pt/WC/C catalyst still maintains a higher current density than the Pt/C catalyst.  相似文献   

6.
Suspensions of Pt/C catalyst nanoparticles in Nafion®-alcohol solutions have been electrosprayed over carbon paper to prepare cathodes for proton exchange membrane fuel cells (PEMFC). Catalyst layers with platinum loading ranging from 0.1 mgPt cm−2 down to 0.0125 mgPt cm−2 and different Nafion® contents were obtained by this method. Morphological studies of the catalyst layers by SEM inspection showed fractal structures with a high dispersion of catalyst. Fuel cell performance of membrane-electrode assemblies (MEAs) made from these cathodes revealed a strong dependence on the Nafion® concentration in the electrosprayed suspension. In the platinum loading range 0.1-0.025 mgPt cm−2 and optimal Nafion® content, a linear relation between fuel cell power density and platinum loading has been found, such that a reduction of platinum content by a factor 4 only reduces the performance by roughly a factor 2. However for the lowest platinum loading investigated, 0.0125 mgPt cm−2, a sharp drop in performance was noticed.  相似文献   

7.
Porous silver membranes were investigated as potential substrates for alkaline fuel cell cathodes by the means of polarization curves and electrochemical impedance spectroscopy measurements. The silver membranes provide electrocatalytic function, mechanical support and a means of current collection. Improved performance, compared to a previous design, was obtained by increasing gas accessibility (using Teflon AF instead of PTFE suspension) and by adding a catalyst (MnO2 or Pt) in the membrane structure to increase the cathode activity. This new cathode design performed significantly better (∼55 mA cm−2 at 0.8 V, ∼295 mA cm−2 at 0.6 V and ∼630 mA cm−2 at 0.4 V versus RHE) than the previous design (∼30 mA cm−2 at 0.8 V, ∼250 mA cm−2 at 0.6 V and ∼500 mA cm−2 at 0.4 V) in the presence of 6.9 M KOH and oxygen (1 atm(abs)) at room temperature. The hydrophobisation technique of the porous structure and the addition of an extra catalyst appeared to be critical and necessary to obtain high performance. A passive air-breathing hydrogen-air fuel cell constructed from the membranes achieves a peak power density of 65 mW cm−2 at 0.40 V cell potential when operating at 25 °C showing a 15 mW cm−2 improvement compared to the previous design.  相似文献   

8.
A study of a direct methanol fuel cell (DMFC) operating with hydroxide ion conducting membranes is reported. Evaluation of the fuel cell was performed using membrane electrode assemblies incorporating carbon-supported platinum/ruthenium anode and platinum cathode catalysts and ADP alkaline membranes. Catalyst loadings used were 1 mg cm−2 Pt for both anode and cathode. The effect of temperature, oxidant (air or oxygen) and methanol concentration on cell performance is reported. The cell achieved a power density of 16 mW cm−2, at 60 °C using oxygen. The performance under near ambient conditions with air gave a peak power density of approximately 6 mW cm−2.  相似文献   

9.
Novel crosslinked quaternized-chitosan membranes were fabricated and further investigated for possible applications in alkaline polyelectrolyte fuel cells. Impedance analysis indicated that some hydrated membranes could exhibit a conductivity close to 10−2 S cm−1. Several membranes were selected and integrated into unit fuel cells for the evaluations on their cell performance, using hydrogen as fuel, air as oxidant and platinum as the electrode catalyst, and a current density of 65 mA cm−2 was already achieved with a flow rate of hydrogen at 50 mL min−1 and air at 250 mL min−1 at a relatively low running temperature of 50 °C.  相似文献   

10.
A study of a phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell using commercial carbon supported, Pt alloy oxygen reduction catalysts is reported. The cathodes were made from PTFE bonded carbon supported Pt alloys without PBI but with phopshoric acid added to the electrode for ionic conductivity. Polarisation data for fuel cells with cathodes made with alloys of Pt with Ni, Co, Ru and Fe are compared with those with Pt alone as cathode at temperatures between 120 and 175 °C. With the same loading of Pt enhancement in cell performance was achieved with all alloys except Pt-Ru, in the low current density activation kinetics region of operation. The extent of enhancement depended upon the operating temperature and also the catalyst loading. In particular a Pt-Co alloy produced performance significantly better than Pt alone, e.g. a peak power, with low pressure air, of 0.25 W cm−2 with 0.2 mg Pt cm−2 of a 20 wt% Pt-Co catalyst.  相似文献   

11.
The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 °C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were ∼6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 Ω-cm2 for cathode and 0.05 to 0.1 Ω-cm2 for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO2/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 °C under dry gases (H2 and O2) showed 0.58 V at a current density of 200 mA cm−2, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 °C demonstrate as potential cathode catalyst for HT-PEMFCs.  相似文献   

12.
The iridium oxide nanoparticles supported on Vulcan XC-72 porous carbon were prepared for cathode catalyst in polymer electrolyte fuel cell (PEFC). The catalyst has been characterized by transmission electron microscopy (TEM) and in PEFC tests. The iridium oxide nanoparticles, which were uniformly dispersed on carbon surface, were 2-3 nm in diameter. With respect to the oxygen reduction reaction (ORR) activity was also studied by cyclic voltammetry (CV), revealing an onset potential of about 0.6 V vs. an Ag/AgCl electrode. The ORR catalytic activity of this catalyst was also tested in a hydrogen-oxygen single PEFC and a power density of 20 mW cm−2 has been achieved at the current density of 68.5 mA cm−2. This study concludes that carbon-supported iridium oxide nanoparticles have potential to be used as cathode catalyst in PEFC.  相似文献   

13.
A miniature air breathing compact direct formic acid fuel cell (DFAFC), with gold covered printed circuit board (PCB) as current collectors and back boards, is designed, fabricated and evaluated. Effects of formic acid concentration and catalyst loading (anodic palladium loading and cathodic platinum loading) on the cell performance are investigated and optimized fuel concentration and catalyst loading are obtained based on experimental results. A maximum power density of 19.6 mW cm−2 is achieved at room temperature with passive operational mode when 5.0 M formic acid is fed and 1 mg cm−2 catalyst at both electrodes is used. The home-made DFAFC also displays good long-term stability at constant current density.  相似文献   

14.
Hydrogen–oxygen fuel cells using an alkaline anion exchange membrane were prepared and evaluated. Various non-platinum catalyst materials were investigated by fabricating membrane-electrode assemblies (MEAs) using Tokuyama membrane (# A201) and compared with commercial noble metal catalysts. Co and Fe phthalocyanine catalyst materials were synthesized using multi-walled carbon nanotubes (MWCNTs) as support materials. X-ray photoelectron spectroscopic study was conducted in order to examine the surface composition. The electroreduction of oxygen has been investigated on Fe phthalocyanine/MWCNT, Co phthalocyanine/MWCNT and commercial Pt/C catalysts. The oxygen reduction reaction kinetics on these catalyst materials were evaluated using rotating disk electrodes in 0.1 M KOH solution and the current density values were consistently higher for Co phthalocyanine based electrodes compared to Fe phthalocyanine. The fuel cell performance of the MEAs with Co and Fe phthalocyanines and Tanaka Kikinzoku Kogyo Pt/C cathode catalysts were 100, 60 and 120 mW cm−2 using H2 and O2 gases.  相似文献   

15.
In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm−2 Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm−2 for NaBH4/O2 fuel cell at 60 °C, 665 mW cm−2 for NaBH4/H2O2 fuel cell at 60 °C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded.  相似文献   

16.
Ammonia-borane (NH3BH3), as a source of protide (H), is initially proposed to release its energy through a fuel cell (direct ammonia-borane fuel cell, DABFC). Cell performance has been elucidated in a 25 cm2 laboratory cell constructed with an oxygen cathode and an ammonia-borane solution fed anode, where the catalyst layers are made of Vulcan XC-72 with 30 wt.% Pt. The potential is 0.6 V at the current density of 24 mA cm−2, corresponding to power density >14 mW cm−2 at room temperature. The direct electron transfer from protide (H) in NH3BH3 to proton (H+) has been further proved by the open circuit potential and the cyclic voltammetry results, which show the possibility of improvement in the performance of DABFC by, for example, exploring new electrode materials.  相似文献   

17.
The present research is aimed to study the oxygen reduction reaction (ORR) on a PdCu electrocatalyst synthesized through reduction of PdCl2 and CuCl with NaBH4 in a THF solution. Characterization of PdCu electrocatalyst was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Characterization results showed that the synthesis method produced spherical agglomerated nanocrystalline PdCu particles of about 10 nm size. The electrochemical activity was evaluated using cyclic voltammetry (CV), rotating disc electrode (RDE) and electrochemical impedance spectroscopy (EIS) in a 0.5 M H2SO4 electrolyte at 25 °C. The onset potential for ORR on PdCu is shifted by ca. 30 mV to more positive values and enhanced catalytic current densities were observed, compared to that of pure Pd catalyst. The synthesized PdCu electrocatalyst dispersed on a carbon black support was tested as cathode electrode in a membrane-electrode assembly (MEA) achieving a power density of 150 mW cm−2 at 0.38 V and 80 °C.  相似文献   

18.
A long-term accelerated test (4600 h) of a 25 cm2 single cell with excess air bleeding (5%) was carried out to investigate the effects of air bleeding on membrane degradation in polymer electrolyte fuel cells. The rate of membrane degradation was negligibly low (fluoride-ion release rate = 1.3 × 10−10 mol cm−2 h−1 in average) up to 2000 h. However, membrane degradation rate was gradually increased after 2000 h. The CO tolerance of the anode gradually dropped, which indicated that the anode catalyst was deteriorated during the test. The results of the rotating ring–disk electrode measurements revealed that deterioration of Pt–Ru/C catalyst by potential cycling greatly enhances H2O2 formation in oxygen reduction reaction in the anode potential range (∼0 V). Furthermore, membrane degradation rate of the MEA increased after the anode catalyst was forced to be deteriorated by potential cycling. It was concluded that excess air bleeding deteriorated the anode catalyst, which greatly enhanced H2O2 formation upon air bleeding and resulted in the increased membrane degradation rate after 2000 h.  相似文献   

19.
Porous silver membranes were investigated as potential substrates for alkaline fuel cell cathodes and as an approach for studying pore size effects in alkaline fuel cells. The silver membrane provides both the electrocatalytic function, mechanical support and a means of current collection. Relatively high active surface area (∼0.6 m2 g−1) results in good electrochemical performance (∼200 mA cm−2 at 0.6 V and ∼400 mA cm−2 at 0.4 V) in the presence of 6.9 M KOH. The electrode fabrication technique is described and polarization curves and impedance measurements are used to investigate the performance. The regular structure of the electrodes allows parametric studies of the performance of electrodes as a function of pore size. Impedance spectra have been fitted with a proposed equivalent circuit which was obtained following the study of impedance measurements under different experimental conditions (electrolyte concentration, oxygen concentration, temperature, and pore size). The typical impedance spectra consisted of one high frequency depressed semi-circle related to porosity and KOH wettability and one low-frequency semi-circle related to kinetics. A passive air-breathing hydrogen-air fuel cell constructed from the membranes in which they act as mechanical support, current collector and electrocatalyst achieves a peak power density of 50 mW cm−2 at 0.40 V cell potential when operating at 25 °C.  相似文献   

20.
Although the first abiotically catalyzed glucose fuel cells have already been developed as sustainable power supply for medical implants in the 1970s, no detailed information concerning the fabrication of these devices has been published so far. Here we present a comprehensive manufacturing protocol for such a fuel cell, together with a detailed analysis of long-term performance in neutral buffer containing physiological amounts of glucose and oxygen. In air saturated solution a power density of (3.3 ± 0.2) μW cm−2 is displayed after 10 days of operation that gradually decreases to a value of (1.0 ± 0.05) μW cm−2 in the course of 224 days. A novelty of this work is the characterization of fuel cell performance with individually resolved electrode potentials. Using this technique, we can show that the major part of performance degradation originates from a positive shift of the anode potential, indicating that a more poisoning-resistant glucose oxidation catalyst would improve the degradation behavior of the fuel cell. As further factors influencing performance an incomplete reactant separation and a mass transfer governed cathode reaction under the relatively low oxygen partial pressures of body tissue have been identified. Consequently we propose an oxygen depleting electrode interlayer and the application of more effective oxygen reduction catalysts as promising strategies to further improve the fuel cell performance under physiological concentrations of glucose and oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号